

Cross-sector opportunities to improve solar data analysis and capabilities DuraMAT Workshop, Stanford University May 23, 2017

Adam Shinn -- adam@kwhanalytics.com

Overview

- About kWh Analytics, Inc.
- Motivation
- Our Products
- Tech Stack
- Analysis Capabilities
- Cross-Sector Collaboration
 Opportunities

About Us

- Startup company, est. 2012
- Raised Series A financing in 2016
- Team has grown from 6 to 17 in the last year

3

About Us

- Have worked with DOE since 2013
- Awarded SunShot 8, 9, 10, and Orange Button
- Enabled us to develop products that also support DOE goals and initiatives

Energy Efficiency & Renewable Energy

Team Organization

- Business
 - Team Operations
 - Marketing and Outreach
 - Business Development
- Software Development
 - Data Engineering
 - Front-end Engineering
 - Data Science

5

The Challenge

- Soft costs make up a significant portion of cost of PV deployment
 - Typically includes installation, maintenance, overhead, financing
- Area of focus in SunShot Initiative
- Our mission statement: More Solar Through Better Data

Our Solutions

C HelioStats

- Solar asset management platform and data management services
- Primary clients are renewables investors and asset managers
- Goal is to make it easier for solar asset owners to manage their portfolios

KUDOS GIVING SOLAR THE CREDIT IT DESERVES

- Insurance product for energy yield
- Primary client is solar developers
- Goal is to cover the risk of underperformance, reduce the cost of capital for developers, allow them to deploy more

What data do we collect?

- System Metadata
 - Financial contract information
 - Installer/EPC firm
 - O&M Provider
 - Location
 - Array orientation and mounting
 - Equipment manufacturers
 - Equipment model numbers
 - Client's energy expectation
- Ongoing Data
 - Energy yield
 - O&M Logs
 - Customer payment and delinquency

Database Stats

- 140k systems
- By Capacity:
 - 38% Residential 0
 - 62% C&I and Utility 0
- Currently integrating another 70k systems

Open-Source Toolbox

kWh analytics 10

C HelioStats

- Data management
- Use-Cases
- Analysis Capabilities

Data management pipeline

kWh analytics 12

HelioStats for Investors and Asset Managers

From the investor and asset manager point of view, I need to know:

- What my returns are
 - How does actual performance compare with my original expectations
 - How does actual performance compare with a 3rd party industry benchmark
- Whether my investment is in good hands
 - How do my hardware and service providers compare with the rest of the market
- When to roll a truck
 - When underperformance is not related to weather
- The root cause of underperformance
 - Caused by weather, downtime, or component failure

Analysis Capabilities on HelioStats

- Time series plots of energy yield, revenue, delinquency
 - With ability to filter by fund, equipment make/model, region, financial product, etc.

kWh αnalytics 14

Analysis Capabilities on HelioStats

- Module manufacturer benchmarking (within a portfolio)
 - Multivariate regression on weather-adjusted performance and categorical
 - Account for confounding variables: inverter, climate region, etc.
- Display weighted performance as a percentage deviation from the mean
- Employ similar approaches to benchmarking installers, inverters, O&M providers

Module Manufacturers

Analysis Capabilities on HelioStats

Areas of future development

- Additional use-cases, e.g., Fleet Operations
- Use of higher frequency and meteorological data:
 - Soiling
 - Degradation
- Use of O&M logs
- Outage tracking
- Root-cause analysis of underperformance

- Benefit for developers, financiers, insurance companies
- Actuarial Capabilities

Solar Project Finance

Benefits of solar project finance:

- Minimizes risk to Developer, able to deploy more with less equity
- Investor is able to capture tax incentives

Role Kudos plays in Project Finance

When energy revenue is de-risked:

- Developers can deploy more
- Less risk for Investors

About the Policy

- Types of projects being insured
 - Individual large-scale systems
 - Portfolios of large-scale systems
 - Portfolios of residential systems
- Policies are typically 10 years, with annual claim periods
- Pay out claim for amount of energy revenue lost under an insured amount (typically 90-95% of expectation)
- Cover energy loss due to weather, downtime, and failure
- Do not cover property damage or anything already covered by other insurance policies
- Do not cover curtailment

Underwriting PV Yield

- Energy revenue is easily calculated by predetermined PPA rate
- Expected value of energy loss is the integral of loss times probability of loss
- Premium is proportional to expected value of loss, represented by percentage of revenue
 kWh αnalytics

21

Actuarial Capabilities

- Without performance data, we can tackle the problem top-up
 - Use PV model, historical weather, probabilistic downtime/failure, you can come up with a reasonable guess for the likelihood of underperforming a given expectation
- With performance data
 - Can validate top-up approach
 - Can get banks comfortable with the risk
 - Can get insurers comfortable with our underwriting
- Effect of Portfolios
 - Account weather correlation due to proximity
- Future development

Cross-Sector Collaboration **Opportunities**

Kwhanalytics/rdtools: PV Degr ×			adam.shinn@kwh			
C 🔒 GitHub	, Inc. [US] https://github	.com/kwhanalytics/r	dtools	@ ☆ ⋒ 0	0 🖬 🛆 🗄	
This repository S	earch Pull req	uesta Issues Marketplace	Gist	2	+- 🐻-	
C RWnanalytics / Poto	IOIS		Onwatch -	11 W Star 7 Y	Fork 3	
O Code 🕕 Issues (8 D Pull requests 2 III Proje	ects 0 🗄 Wiki 🔿 Setti	ngs Insights -			
PV Degradation Analysi	s Tools in Python				Edit	
@ 71 commits	1/2 11 branches	⊙ 3 releases	11 4 contributors	dji MIT		
Branch: master - Ne	w pull request	Create new fi	le Upload files	Find file Clone or do	wnload -	
T abshinn committed or	GitHub Merge pull request #9 from low	hanalytics/issue_6_norm_with_pv	watta	Latest commit 927274f	on Apr 13	
illi rdtools	Code review changes: impl sugge	sted variable name changes, ad	d docume	ал	onth ago	
III tests	Fix tests broken by keyword name	changes.		an	onth ago	
.gitattributes	Add versioneer for compatibility.			6 m	onths ago	
.gitignore	update gitignore			4 m	onths ago	
ILCENSE	Initial commit			6 m	onths ago	
MANIFEST.in	Add versioneer for compatibility.			6 m	onths ago	
README.md	Add some basics to README.			6 m	onths ago	
E requirements.txt	Update req statsmodels version			3 m	onths ago	
E setup.cfg	Fix expected tag prefix.			6 m	onths ago	
setup.py	Merge branch 'master' of github.c	om/kwhanalytics/rdtools into iss	ue_6	2 m	onths ago	
versioneer.py	Add versioneer for compatibility.			6 mi	onths ago	
ratools	a				_	
Degradation foor	o shatau alkala dagaadatlag agabala					
ran	ge Bı	itton				
,						

kWh analytics 23

Orange Button

- Goal is to simplify and standardize data
- kWh Analytics' role
- All stakeholders benefit from better data management

RdTools: Degradation Analysis Tools in Python

CGitHub https://github.com/kwhanalytics/rdtools

Recap

- About kWh Analytics, Inc.
- Motivation
- Our Products
- Tech Stack
- Analysis Capabilities
- Cross-Sector Collaboration
 Opportunities
- Thanks!

adam@kwhanalytics.com

26