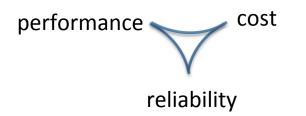


Combined-Accelerated Stress Testing (C-AST)

Peter Hacke, Michael Kempe David Miller, Sergiu Spataru May 22, 2017

Energy Materials Network U.S. Department of Energy

Sandia National Laboratories



Overview

- Motivation
- Project Overview
- Stakeholders
- Timeline
- Testing
 - Philosophies
 - ASTM 7869 stress cycle basis
 - Stress levels
 - Mechanical loading
 - Humidity
 - Project demonstration test matrix
- Modeling

Combined - Accelerated Stress Testing

- Now: mechanism-specific tests
 - Known failure mechanisms
 - Minimal examination of interdependencies
 - Numerous modules and multiple parallel tests
- Combined-accelerated stress testing
 - Combine the stress factors of the natural environment
 - Fewer modules, fewer parallel tests
 - Discover mechanisms not *a-priori* known in new module designs
 - Reduce residual risk, accelerate time to market and bankability
 - Reduce costly overdesign
 - Application of weathering models

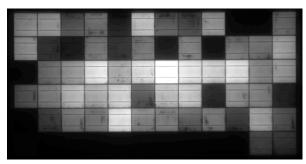
Findable by combined-accelerated stress testing

Backsheet cracking \rightarrow

UV, cyclic oxidative/hydrolytic stress, CTE stress, EVA acidity

PID

Grid finger corrosion – delamination


Light and elevated temperature induced degradation

Snail trails \rightarrow delamination

Findable by combined-accelerated stress testing

Backsheet cracking

PID → System voltage, humidity, temperature, light, soiling

Grid finger corrosion – delamination

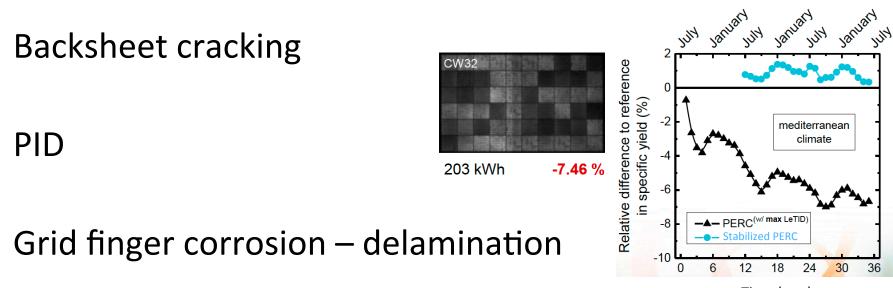
Light and elevated temperature induced degradation

Snail trails \rightarrow delamination

Findable by combined-accelerated stress testing

Backsheet cracking

PID


Grid finger corrosion – delamination → System voltage, humidity, temperature, light, soiling

Light and elevated temperature induced degradation

Snail trails \rightarrow delamination

Findable by combined-accelerated stress testing

Time (mo.)

Light and elevated temperature induced degradation Light, elevated temperature, current

Snail trails→ delamination

Findable by combined-accelerated stress testing

Backsheet cracking

PID

Grid finger corrosion – delamination

Light and elevated temperature induced degradation

Snail trails→ delamination→ Mech. load, UV, electric field, moisture, impurities



DuraMAT NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY

Combined - Accelerated Stress Testing – Overview

• Stress factors of the natural environment applied using mini module platform:

- light (with partial shading) temperature humidity (uncondensed) rain system voltage mechanical stress
- Manifestation of degradation mechanisms
- Application of degradation models
- Comparison with field failures
- Applicability and limitations of the 4-cell mini module
- Indicators of degradation, characterization (i.e. adhesion, indentation hardness)
- In-situ mapping/monitoring

Accelerating development, bankability, risk reduction and commercialization

DURAMAT NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY

Stakeholders

- Materials manufacturers
- Film makers
- Module makers (working with several)
- Customers
 - investors
 - Insurance
- Weathering tool makers
- Standards

- Initial capability development completion, model development
 - Spring to Fall 2017
- Screening tests, trials, RFPs with tool
 - Fall to Winter 2017
- Backsheet evaluation demonstration (*milestone*)
 - Winter to Spring 2018
- Phase 2 of capability development (in-situ IV, imaging, testing...)
 - 2018...

Test philosophies

Acceleration:

- You can accelerate to the point until you start causing non-field representative degradation mechanisms
 - Need to run multiple conditions for this to examine Arrhenius behavior
- Maintain levels occurring at the high end of that seen the natural environment so that the test is valid for any candidate product you put in it.

- We will first work under this principle in C-AST

ASTM D7869 Test Cycle

Basis for stress cycle

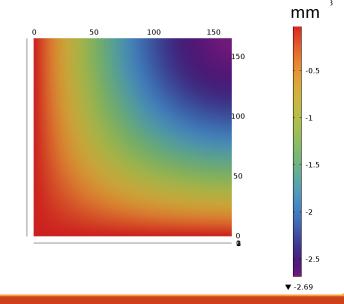
Step Number	Step Minutes	Function	Irradiance Set Point ¹ @340nm (W/m²/nm)	Black Panel Temperature Set Point ¹	Chamber Air Temperature Set Point ¹	Relative Humidity Set Point ¹
1	240				nclude a freeze here	
1	240	dark + spray	-	-	40°C	95%
2	30	light	0.40	50°C	42°C	50%
3	270	light	0.80	70°C	50°C	50%
4	30	light	0.40	50°C (42°C	50%
5	150	dark + spray	-	- \	40°C	95%
6	30	dark + spray	-	-)	40°C	95%
7	20	light	0.40	50°C	42°C	50%
8	120	light	0.80	70°C 🔪	50°C	50%
9	10	dark	-	-	40°C	50%
10	Repeat steps 6-9 an additional 3 times (for a total of 24 hours = 1 cycle)					

Additional factors of mechanical stress and system voltage applied

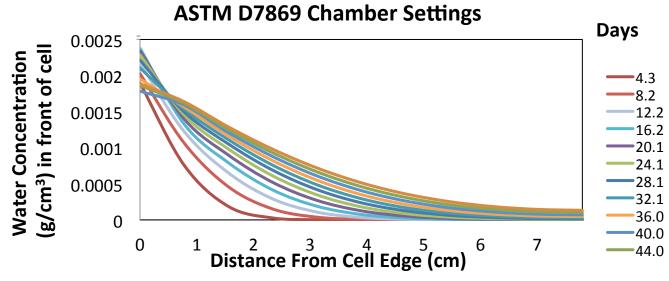
Move to higher temperature +90°C

- Longer dark/spray cycles to achieve moisture uptake levels (saturation)
- Multiple irradiance levels to simulate diurnal outdoor conditions; High level increases acceleration
- No light/spray together it doesn't typically rain in max sunshine conditions
- Interspersed light/dark sub-cycles to simulate thermal shock effects occurring in natural exposures

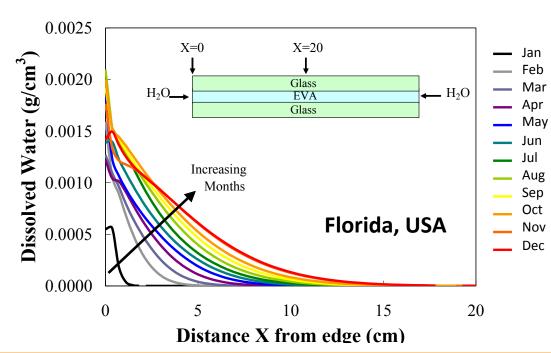
DURAMAT NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY


C-AST Test 1 - levels

Factor	Level	Notes
Temperature	-40°C + 90°C module T	Verify actual sample temperature is 90°C
Irradiance	0 to 2 Suns (120 W/m^2 to 400 nm)	Actually, 0.4 W/m^2/nm and 0.8 /m^2 /nm at 340 nm (1 sun = 0.5 W/m^2/nm ASTM G173_03)
HV bias	+ or - 1000 V on cells over load resistor	
Humidity	0-100 %	
Condensation	On/Off (with sprayers)	
Mechanical loading	15 kPa, or greater	


Consideration for reduction to mini - module:

FEA simulation: 1 kPa loading for full size module:15 kPa for 2 x 2 cell mini module.


Out of plane displacement \sim 3 mm at the module center. Tests show similar radius of curvature to full size module at the maximum $\stackrel{\checkmark}{\vdash}$

Levels: Achieving field-representative humidity

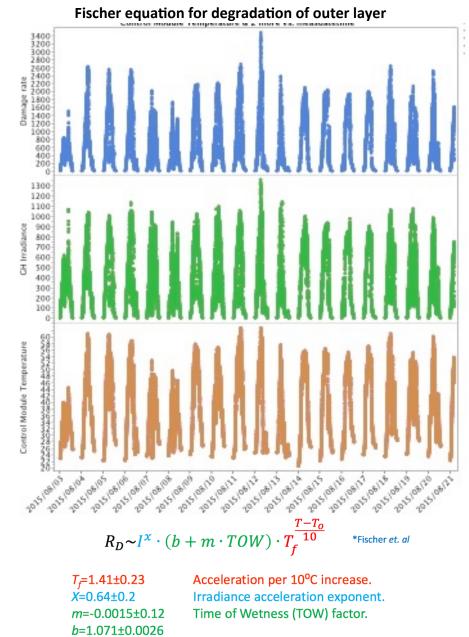
 May apply humidity preconditioning before application of ASTM D7869type cycle to more rapidly equilibrate moisture content for the testing

DuraMAT NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY

Test matrix 6 mini modules

(Demonstration for milestone deliverable)

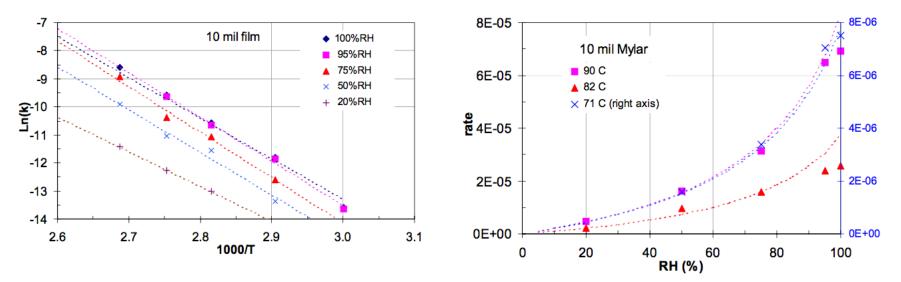
Initial backsheet demonstration based on:


- 1) DuPont's experience
- 2) 130 types of backsheets out there, no clear method for differentiation
- 3) Focus on safety/integrity now vs. measurements of in-situ module power performance later

	Tedlar-Polyester-EVA	Polyamide	Stabilized PET		
UV absorbing rear EVA	✓	1	\checkmark		
Non UV absorbing EVA	\checkmark	1	\checkmark		

Backsheet type

- Primary goal will be to differentiate these backsheets that show various extents of degradation in the field, but not in standardized stress tests
- Secondary goal will be to apply existing degradation rate equations


Degradation modeling - f(G,RH, T)

AT NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY

PET Hydrolysis Kinetics

W. McMahon, et al., J. Chem. Eng. Data, 4, 57-79(1959)

 $\log[C/(C-x)] = kt = A \exp(-E_a/RT) [RH_{eff}] t$

 $A = 1.55 \times 10^{12} \text{ hr}^{-1}$ $E_a = 29,000 \text{ cal/mol} (R = 1.987, T \text{ in kelvins})$ $RH_{eff} = 0.3RH/(1.3-RH)$ *t* in hours brittle when log[*C*/(*C*-*x*)] = ~0.0024 (0.6% conversion; *Mw/Mw*_o ~ 0.7)

Thanks for your attention !

CONTRACT NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY