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CELL CRACKS – WHAT CAN HAPPEN? 

The module continues working even after major cell breakage, but… 
cracks eventually lead to power loss over time. 
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Electroluminescence video by T. Silverman, https://www.youtube.com/watch?v=-qdyxIybmoc (2017). 500 mm 

https://www.youtube.com/watch?v=-qdyxIybmoc


THIS COULD HAPPEN 
TO YOU! 
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Könges et al., 26th EU PVSEC, 3290-3294 (2011). 

http://energyinformative.org/best-solar-panel-monocrystalline-
polycrystalline-thin-film/ 
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DEGRADATION DUE TO HOT SPOTS AND CELL CRACKS IN TERRESTRIAL PV CELLS 

R. Andrews, 2018 NREL PV Reliability 
Workshop, Lakewood, CO (2018). 

Jordan et al., Prog. Photovolt. Res. Appl. 25, 318-326 (2017). 
• Solder bond failures and cracked cells are suspect for hot 
spots.1 1Jordan et al., Prog. Photovolt. Res. Appl. and 25, 318-326 (2017) and 25, 583-591 (2017). 





  

  
   

    

   
  

   
  

 
    

   

  
   

   
 

  

 

  

OSAZDA’S APPROACH TO CRACK-INDUCED PV DEGRADATION 

Goal 1: Commercial MMC 
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E, s YS, re, S-N, etc. 

s C, Rsq, rc, etc. 

Step 2: Processing 
- Screen Printing & Firing 

carboxylation vs. amination, µ, wt.%, etc. 

Step 1: Materials Engineering 
- MMC Paste Formulation 

Step 3: Materials Characterization 
- RACK & DMA 

Voc, Jsc, FF, h, accumulated 
damage, equivalent year thermal 

cycles, etc. 

Step 4: Integration 
- Cell and Mini-Module Testing 

Ag 

CNT 

Paste Product 

Goal 2: Proprietary 
Integration 

Processing Recipes 

Goal 3: Predictable 
Module Performance 

& Degradation 



 
 

 

 

  

PASTE FORMULATION (OSAZDA) 

Milling CNT 
agglomerations 

Mixing into Ag paste • Using a three-roll-mill 
• Using a planetary 

Surface functionalization centrifugal mixer 

• Carboxylation (-COOH) 
• Amination (-NH3) 

7 



MULTI-WALLED CARBON NANOTUBE (MWNT) FUNCTIONALIZATION

Figure 1: HRTEM image of etched sidewalls from HNO3 H2SO4 treatment, From: “Enhanced 
Mechanical Properties of Aluminum Based Composites Reinforced by Chemically Oxidized Carbon 
Nanotubes” by Guo, B., Zhang, X., Cen, X., Chen, B., Wang, X., Song, M., Ni, S., Yi, J., Shen, T., Du, Y., 
2018, Reprinted with Permission

Figure 2: HRTEM image of etched sidewalls from HNO3 H2SO4 treatment, now combined with 
aluminum, From: “Enhanced Mechanical Properties of Aluminum Based Composites Reinforced by 
Chemically Oxidized Carbon Nanotubes” by Guo, B., Zhang, X., Cen, X., Chen, B., Wang, X., Song, M., 
Ni, S., Yi, J., Shen, T., Du, Y., 2018, Reprinted with Permission



BALANCING LOAD TRANSFER AND FRAGMENTATION

Figure 3: Displaying various 
mechanisms for functionalizing carbon 
nanotubes and the resulting features, 
From: “Enhanced Mechanical 
Properties of Aluminum Based 
Composites Reinforced by Chemically 
Oxidized Carbon Nanotubes” by Guo, 
B., Zhang, X., Cen, X., Chen, B., Wang, 
X., Song, M., Ni, S., Yi, J., Shen, T., Du, 
Y., 2018, Reprinted with Permission



SCREEN PRINTING AND FIRING (GEORGIA TECH)

• Plug-in solution to a standard industrial process
• Line uniformity, laydown weight, contact and bus-to-bus resistance need improvement
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Rc (Ω.cm2) Rbus-to-bus (Ω.cm2) Laydown Weight Wet 
(g)

Laydown Weight Dry 
(g)

Commercial Paste 7.800 0.041 0.161 0.130
MetZillaTM Paste 8.700 0.056 0.151 0.115 – 0.125

~ 30 µm

50 to 55 µm

Commercial
Paste

~ 25 µm

50 to 55 µm

MetZillaTM



DYNAMIC MECHANICAL ANALYSIS (UNM) 
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(d)

3

3MetZillaTM for Al-BSF cells –
• 4% decrease in elastic modulus
• 16% increase in modulus of toughness
• Increase in ductility

(a) (b) (c)

MetZillaTM for PERC cells – in progress
• Elastic modulus control is possible
• Ductility control is possible
• CNT wt% optimization is needed to Increase modulus of toughness

Commercial Baseline



RACK (RESISTANCE ACROSS CLEAVES & CRACKS) MEASUREMENTS
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RACK (RESISTANCE ACROSS CLEAVES & CRACKS) – GAP BRIDGING & SELF-HEALING
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• >50 μm maximum bridgeable gap with optimum CNT loading
• “Self-healing” to bridge ~20 µm gaps repeatably

MetZillaTM for Al-BSF Cells
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RACK (RESISTANCE ACROSS CLEAVES & CRACKS) – GAP BRIDGING & SELF-HEALING

MetZillaTM for PERC Cells

• 20 to 30 μm average gap 
and >70 μm maximum 
bridgeable gap

• “Self-healing” to bridge ~10 
to 20 µm gaps repeatably

• CNT wt% and firing 
schedule optimization 
needed



IN SITU SCANNING ELECTRON MICROSCOPY DURING STRAIN TEST (CINT)
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5 μm

Commercial Paste MetZillaTM Paste

MetZillaTM Paste MetZillaTM Paste



THREE-POINT BENDING TEST (NREL)

• Two gridlines between two bus bars on Si
substrate.

• Si substrate on a notched acrylic beam.
• Concentrated strain at the center to

induce a single crack.
• Acrylic beam supports the substrate and

transfers strain to Si through 3-point
bending.

• Bending load, displacement, and a 4-point
electrical resistance across the gridlines
are recorded.

• Further displacement after fracture causes
the cracked faces of the Si to separate:
crack opening displacement (COD).

• Bending displacement vs. COD has been
simulated and experimentally verified
through optical measurements of a
cracked silicon beam.
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THREE-POINT BENDING TEST (NREL) – GAP BRIDGING AND SELF-HEALING

• Inflection point in loading force indicates
crack formation.

• Baseline gridlines (DuPont paste) becomes
electrically open upon crack formation.

• Resistance does not rise upon crack
formation for composite gridlines (MetZillaTM

paste) .
• Resistance eventually rises to 10s of W for

MetZillaTM paste for > 20 µm COD.
• MetZillaTM gridlines likely self-heal before

reversing back to the inflection point (crack
formation).



The fatigue life of composite-enhanced
metallization is experimentally evaluated by
novel cell-level measurements

Sections of metallized PV cells are mounted on
elastic substrates

The composite beams are loaded in three-point
bending to first crack the silicon and create the
bridging metallization, then in a cyclic fashion

A four-point resistance measurement is made
across the bridging metallization during cyclic
loading

When the bridge becomes open, a failure is
recorded

elastic beam
PV cell

3-point bending
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Repeating this measurement at a variety of
strain ranges, rates and environmental
conditions will describe fatigue life of the
composite-enhanced metallization.

Simplistically, a function that properly
describes fatigue life may then be applied to
on-sun module conditions by summing the
incremental damage induced by each unique
cycle. When D=1, failure will occur.
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THREE-POINT BENDING TEST – PREDICTIVE DEGRADATION MODEL DEVELOPMENT

•Independent verification of gap-bridging and self-healing.
•S-N type measurements for predictive degradation model development.



CELL PERFORMANCE – SILVER PASTE MMC 
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• Similar cell performance with CNT incorporation

Device ID Voc [V] Isc [A]
Jsc

[mA/cm2] FF [%] Eff [%] n-factor
Rseries

[Ω.cm2]
Rshunt

[Ω.cm2]
Area 
[cm2]

Baseline 0.666 9.43 39.61 77.9 20.56 1.21 0.59 4075 244

MMC 0.669 9.70 39.72 77.5 20.58 1.20 0.72 5565 244



Post 100 Thermal Cycles

DESCRIPTION ON MODULE TESTING
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Module Construction
• Physical  layout
• Ribbon tabbing 
• Bottom encapsulant 

Initial Defects
• Diamond scribe used to 

manually introduce cracks

Module Construction 
• Top encapsulant
• Sample lamination 

Vacuum Cracking
• Vacuum applied 0 – 15 kPa
• EL and resistance 

measurements post-crack

Thermal Cycling
• +85 → -40°C
• In-situ resistance 

measurements 



BASELINE MODULE TESTING

• 8-channels measurement per module
• In-situ resistance measurements and 

EL before and after thermal cycling 
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as fabricated

cracked

after 100 thermal cycles

thermal cycles 



MODULE INTEGRATION – ACCELERATED TESTING
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• Commercial Ag paste as baseline
• MMC shows slower degradation
• Future testing with PERC



CONCLUSIONS

• Fracture toughness increases with CNT incorporation.

• MMC-enhanced metallization can provide > 50 µm gap bridging capability.

• “Self-healing” occurs when the fractured composite gridlines are brought together.

• “Self-healing” is repeatable and settles at 10 to 20 µm.

• Beginning-of-life cell performance is approximately the same with and without the 
MetZillaTM integration.

• MetZillaTM-enhanced Al-BSF modules degrade at a slower rate compared to 
baseline modules. 

• Accelerated testing will be conducted on PERC mini-modules. 
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NEXT DURAMAT WEBINAR

December 11, 2019
"Demonstrating New Concepts for Reliable Low-Cost Module 

Encapsulation and Moisture Barrier Technologies"
Presented by Reinhold Dauskardt of Stanford University

Register at duramat.org/webinars.html
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