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Background: More Data, More Opportunities 

Increasing volume of photovoltaic (PV) system performance data creates opportunities for 
monitoring system health and optimizing operations and maintenance (O&M) activities. 
Digital O&M $9b industry by 2024 (“The State of Digital O&M for the Solar Market”, 
Greentech Media, 10/10/19) 
However, classic approaches—waterfall analysis, performance index analysis—require 

A significant amount of engineering time 
Knowledge of PV system modeling science and best practices 
Accurate system configuration information 
Access to reliable irradiance and meteorological data 
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New Approaches are Needed 
For these reasons, existing PV system 

...rather than the rapidly increasing number of 
performance engineering methods are focused 

distributed rooftop systems. 
on utility scale power plants... 

Image credit: SunPower Corp. Image credit: Google Earth 
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Utility vs. Distributed 

Utility Distributed 
Site model 3 7 

Irradiance data 3 7 
Meteorological data 3 7 
People / PV system > 1 � 1 

New approaches needed to analyze and 
managed distributed PV 
How to extract insight into system health 
from only a power signal? 
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The Goals of PVInsight 

Develop novel PV performance analysis techniques that are automatic and require only 
measured power 
Use cutting edge approaches to develop algorithms 

Signal processing 
Optimization 
Unsupervised machine learning 

Publish tools as open-source software (GitHub, PyPI, Anaconda) 
solar-data-tools: Data preprocessing, cleaning, and filtering 
statistical-clear-sky: Clear sky modeling and degradation analysis 
More packages coming! 
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Solar Data Tools 

Preprocessing 
Time stamp cleaning 
Matrix embedding 

Cleaning 
Missing data filling 
Time shift detection and correction 

Filtering 
Data quality / corrupt data 
Clear day / cloudy day identification 
Inverter clipping detection 
System capacity change detection 
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Solar Data Tools 

Preprocessing 
Time stamp cleaning 
Matrix embedding 

Cleaning 
Missing data filling 
Time shift detection and correction 

Filtering 
Data quality / corrupt data 
Clear day / cloudy day identification 
Inverter clipping detection 
System capacity change detection 

Python Software 
solar-data-tools on GitHub, PyPI, and Anaconda. 
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Solar Data Tools 

Preprocessing 
Time stamp cleaning 
Matrix embedding 

Cleaning 
Missing data filling 
Time shift detection and correction ← 

Filtering 
Data quality / corrupt data 
Clear day / cloudy day identification ← 
Inverter clipping detection 
System capacity change detection 

Python Software 
solar-data-tools on GitHub, PyPI, and Anaconda. 
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1 Estimate solar noon on each day
from data

2 Fit signal separation model
3 Identify shift points and estimate

correction factors

1https://bmeyers.github.io/QualsSlides/
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Time shift detection algorithm 
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Time shift detection algorithm 

1 Estimate solar noon on each day 
from data 

Two Options 

Calculate the energy center of mass on each day (default behavior) 
Find the sunrise and sunset times and take the average 
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3 Identify shift points and estimate
correction factors
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Time shift detection algorithm 

1 Estimate solar noon on each day 
from data 

2 Fit signal separation model 

Optimal Signal Demixing (OSD) 

A novel approach to blind signal separation, based on convex optimization1 

1https://bmeyers.github.io/QualsSlides/ 
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Time shift detection algorithm 

1 Estimate solar noon on each day 
from data 

2 Fit signal separation model 
3 Identify shift points and estimate 

correction factors 

Piecewise constant → constant 
The piecewise constant signal component automatically find the shift points and gives the 
estimate of the correction factor 

1https://bmeyers.github.io/QualsSlides/ 
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Clear day / cloudy day identification 
Daily energy content Daily smoothness 

Clear days have more energy relative to Clear days are smoother in time than 
seasonal baseline partially cloudy days 
Some high energy days can see be partially Some very cloudy days can also exhibit 
cloudy smoothness 
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Estimating the seasonal baseline 

Again use OSD 
Separate measured daily energy signal into 

A smooth, periodic signal 
Non-Gaussian, skewed noise 

Use a quantile regression or tilted ` 1 cost 
function on residuals instead of typical ̀  2 

(sum-of-squares) loss 
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Local Quantile Regression 

` 2 norm fits the local average and ̀  1 norm fits the local (approximate) median 
τ sweeps through the local (approximate) percentiles of the data 
τ = 0.9 works best for the clear day baseline: upper envelope fit with a little permeability 
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Discrete Di˙erences and Smoothness 

Our smoothness metric is the second-order discrete di˙erence: 

sk = kpk [t − 1] − 2pk [t] + pk [t + 1]k2 

pk ∈ Rm is the kth column of the power matrix, the power signal on day k 
pk [t − 1] − 2pk [t] + pk [t + 1] measures the local “curvature” of the signal 
Taking the ̀  2-norm of each daily segment measures the overall “roughness” of the day 
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Discrete Di˙erences and Smoothness 

Finally, we do a little rescaling to turn sk into a metric between 0 and 1. 
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Both Methods Are Imperfect 

Not all high energy days are clear, but all clear days are high energy. 
Not all smooth days are clear, but all clear days are smooth. 
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Putting it all together 
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Requires lots of measured/estimated input data
Diÿcult to tune model to match observed data
Can’t handle non-ideal behavior such as site shading
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Clear sky models 

See pvlib-python (Holmgren, 2015) for 
implementation / open-source code 
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Unsupervised Machine Learning for Clear Sky Modeling: SCSF 

Statistical Clear Sky Fitting2 (SCSF) estimates the clear sky power output of a system, 
given historical data. 
Starting with power data in matrix form, SCSF finds an approximate factorization 

P ≈ L × R = Pclear sky 

This is known as Generalized Low Rank Modeling 3, related to PCA, SVD, etc. 

Python Software 
statistical-clear-sky on GitHub, PyPI, and Anaconda. 

2B. Meyers, M. Tabone, and E. C. Kara, “Statistical Clear Sky Fitting Algorithm,” 2018 
3M. Udell, C. Horn, R. Zadeh, and S. Boyd, “Generalized Low Rank Models,” 2016 
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SCSF Visualization 

System 1 System 2 System 3 

5-minute sampling 1-minute sampling 5-minute sampling 
6 months of data 3 years of data 1 year of data 
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SCSF Applications 

Clearness index/clear data filtering 
Baseline estimation for statistical 
forecasting 
Shading and soiling analysis 
Degradation analysis 

B. Meyers DuraMAT Webinar SLAC Lab 22 



Motivation Data Processing Clear Sky Degradation Conclusion 

Table of Contents 

1 

2 

3 

4 

Motivation: Digital O&M in the Solar Industry 

Data preprocessing and filtering 

Data-driven clear sky modeling 

Long-term system degradation estimation 

B. Meyers DuraMAT Webinar SLAC Lab 23 



Motivation Data Processing Clear Sky Degradation Conclusion 

The SCSF Model Must Include a Degradation Term 

Strictly periodic models do a poor job 
of fitting real-world, multi-year data sets. 

B. Meyers DuraMAT Webinar SLAC Lab 24 



Motivation Data Processing Clear Sky Degradation Conclusion 

The SCSF Model Must Include a Degradation Term 

Strictly periodic models do a poor job 
of fitting real-world, multi-year data sets. 

B. Meyers DuraMAT Webinar SLAC Lab 24 



Motivation Data Processing Clear Sky Degradation Conclusion 

Fitting the Degradation Term 

We model the degradation term as a year-over-year (YOY) percent change in energy 
output 

di+365 − di 
= β, for i = 1 . . . T − 365. 

di 

We include a constraint on the SCSF model that all pairs of days must have the same 
YOY value 
This makes the math diÿcult → the paper4 goes into the details of how this is handled 

Python Software 
Functionality is included in statistical-clear-sky. 

4B. Meyers, M. Deceglie, C. Deline, and D. Jordan, “Signal Processing on PV Time-Series Data: Robust 
Degradation Analysis without Physical Models,” IEEE J-PV, 2019. 
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Discussion 

See J-PV paper5 for validation—worked with 
NREL on comparison to RdTools 

This unsupervised machine learning approach 
does not require models of the sites nor 
irradiance or meteorological data 
SCSF lends itself naturally to fleet-scale 
analysis of heterogeneous systems, where such 
supplementary data may be missing or incorrect 
Can additionally analyze irradiance signals to 
estimate sensor drift 

5B. Meyers, M. Deceglie, C. Deline, and D. Jordan, “Signal Processing on PV Time-Series Data: Robust 
Degradation Analysis without Physical Models,” IEEE J-PV, 2019. 
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Conclusion 

We’re developing software tools to enable fleet-scale analysis of distributed rooftop solar 
PV systems 
We hope to show that power signals are very useful by themselves for digital O&M 
What I’ve shown here is an introduction to the problems we’re solving 
Additional research includes: 

Power signal clustering for shading analysis 
Soiling estimation and additional system loss factors 
System location and orientation estimation from power data 
DuraMAT PV-Pro project (led by LBL) 

Find our code on GitHub, PyPI, and Anaconda 
solar-data-tools 
statistical-clear-sky 
More to come! 
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