

Project Updates and Progress at Sandia's Field Test Site

Elizabeth Palmiotti, Bruce King Sandia National Laboratories David Miller NREL

Acknowledgements

William Snyder, Josh Stein Sandia National Laboratories

David Miller, Soňa Uličná, Laura Schelhas, Rachael Arnold, Jimmy Newkirk, Emily Rago, Archana Sinha, Kent Terwilliger, Michael Thuis NREL

Peter Pasmans, Chris Thellen Endurans

Kristopher Davis, Dylan Colvin, John Sherwin UCF & FSEC

Legacy: Ashley Maes, Naila Al Hasan, Karen Yang

DuraMAT Core Objectives

INREL

Sandia Field Test Site

ABQ, NM Climate Zone: Koeppen-Geiger BSk (cold Steppe)

Sandia Field Test Site

- Weather and solar irradiance summary
- Comprehensive Weather Platform
 - Primary and secondary trackers
 - DNI, GNI, diffuse, spectrum
 - Fixed orientation
 - GHI, Global Latitude, UV, spectrum
 - Non-irradiance
 - Ambient temperature, windspeed/direction (10m), barometric pressure, humidity, rainfall
- In-field Measurements
 - Plane-of-array pyranometer, reference cells
- Data Collection
 - 1s data rate
 - Written to database, GPS synchronized with other field measurements
- Other as needed
 - Rear-side irradiance for bifacial

All on-site calibrations traceable to the World Radiometric Reference via NREL Pyrheliometer Comparison

Module Characterization

- Electrical Performance Solar Simulator
 - 1 Sun Flash Tester: Spire 4600SLP, Class AAA
 - Temperature Controlled Lab
 Flasher (TCLF) A+A+A+ Spire
- Co-located visual, electroluminescence (EL), infrared (IR), and UV fluorescence (UVF) imaging

INREL

DuraMAT Fielded Projects at Sandia

DuraMAT Module Library

Characterize material degradation from natural aging in commercially available photovoltaic modules.

BACKFLIP

A comparison of market-benchmark and emerging nonfluoropolymer-based, co-extruded photovoltaic backsheets.

DuraMAT Module Library

Characterize material degradation from natural aging in commercially available photovoltaic modules.

/ Multi Yoar Liold Doploym	
4. Multi-lear Field Deployin	ent

Manufacturer	Model	Cells	Cell Type	Inverter
Jinko	JKM270PP-60	60	Multi-Si	IQ7+
Canadian Solar	CS6K-300MS Quintech	60	Mono PERC	IQ7+
Hanwa Q Cells	Q.Peak-G4.1 300	60	Mono-Si	IQ7+
LG	LG320N1K-A5	60	Mono N-type	IQ7+
Panasonic	VBHN330SA17 HIT	96	HIT N-type	IQ7X
Mission Solar	MSE300SQ5T	60	Mono PERC	IQ7+
ltek*	350 SE	72	Mono P-type	PVI

* Installed one year delayed

U.S. DEPARTMENT OF ENERGY

DuraMAT

Non-Destructive Characterization

Backsheet

- Indoor light IV (flash testing)
 - YoY STC parameters
- Electroluminescence
- Visual
- FTIR
- Gloss
- Reflection Spectroscopy

- Modified CNC table
- Tight process control to avoid heating and sample damage
- 0.5 1" diameter samples

Destructive Characterization

- Optical imaging
- Raman Spectroscopy
- FTIR
- Differential Scanning Calorimetry (DSC)
- SAXS/WAXS (SLAC)

DuraMAT

Electrical Performance

Non-Destructive: Module

Manufacturar	Rating, W	Initial	Year 1		Year 2		Year 3	
wanulacturer			Power, W	Rd, %/yr	Power, W	Rd <i>,</i> %/yr	Power, W	Rd <i>,</i> %/yr
Canadian Solar	300	300 ± 2	295 ± 1	-1.6	293 ± 1	-1.1	284 ± 2	-1.5
Hanwa Q Cells	300	302 ± 1	295 ± 1	-2.2	293 ± 1	-1.5	292 ± 1	-0.9
Itek	360	358 ± 1	351 ± 1	-2.2	339 ± 8	-2.2	-	-
Jinko	270	273 ± 1	268 ± 1	-1.8	264 ± 1	-1.6	260 ± 1	-1.4
LG	320	319 ± 1	316 ± 1	-0.9	314 ± 1	-0.8	311 ± 6	-0.7
Mission Solar	300	292 ± 1	289 ± 1	-1.0	286 ± 1	-1.0	282 ± 2	-1.0
Panasonic	330	330 ± 0	330 ± 1	0.0	328 ± 1	-0.3	324 ± 3	-0.5

- All fielded modules are brought inside annually for recharacterization
- Most modules display a 1-2%/year power degradation during the first year that stabilizes to ~ 1%/year in subsequent years
- Trends are consistent with expectations from larger arrays of the same modules on-site at Sandia

Electroluminescence

U.S. DEPARTMENT OF

DuraMAT

Electroluminescence

Non-Destructive: Module

Panasonic 4189

DuraMAT

FTIR & Gloss Non-Destructive: Backsheet

Mission Solar 80 -- Control --- Year 1 Gloss Units - Year 2 60 40 70 20 30 40 50 60 80 90 Angle (°) 100 LG

100

Pearson correlation was used to identify backsheets using known references

- Canadian (PVDF) and Jinko (TPT) display low gloss characteristics and reduction with aging
- PET modules show medium to high gloss
 - Minimal change with time

Gloss Range	Measurement	60°
High Gloss	20°	<10 GU
Semi Gloss	60°	
Low Gloss	85°	>70 GU

INREL

80

80

90

Reflectance and b*

Non-Destructive: Backsheet

	b*				
	Control	Year 1	Year 2	Year 3	
Canadian Solar	0.98	0.9	0.86	0.76	
Jinko	0.38	1.31	0.89	1.03	
Mission	-1.69	-2.53	-2.2	-2.18	
Panasonic	0.95	1.76	1.88	1.82	
Itek	4.3	2.11	2.36		
LG	0.04	-0.04	0.09	1.28	
Q Cells	-1.66	-1.49	-1.43	-1.8	

Control

• Year 1

Year 2Year 3

Q-Cells

700

Sandia National

aboratories

650

Non-Destructive Characterization

Backsheet

- Indoor light IV (flash testing)
 - YoY STC parameters
- Electroluminescence
- Visual
- FTIR
- Gloss
- Reflection Spectroscopy

Coring

- Modified CNC table
- Tight process control to avoid heating and sample damage
- 0.5 1" diameter samples

Destructive Characterization

- Optical imaging
- Raman Spectroscopy
- FTIR
- Differential Scanning Calorimetry
- SAXS/WAXS (SLAC)

Dura MAT

Coring Downselection Mission Year 3

U.S. DEPARTMENT OF

DuraMAT

Core Dissection Example Q-Cells

Control

*similar: Jinko, Canadian, Itek

DuraMAT

Core Dissection Some notable features

Black

Clear

encapsulant

encapsulant

Mission - Control

*similar: LG

Panasonic - Year 2

U.S. DEPARTMENT OF

DuraMAT

CNREL

FTIR

Front Encapsulant and Rear Encapsulants

- Most modules feature EVA front and rear encapsulants
- Panasonic used TPO front and EVA rear
- Rear encapsulants were generally stable
- Front EVA from some modules showed broader, more intense peaks in the range of 1090 – 800 cm⁻¹ that varied with year of sampling
 - Indication of silane adhesion promoters, EVA oxidation and/or glass contamination

DSC First Heating Front Encapsulant

BERK

150

Control

Year 1

Year 2

U.S. DEPARTMENT OF

DuraMAT

INREL

DSC First Heating Front Encapsulant

Year 2 Year 1 Control

- Percent crystallinity decreased a small amount YoY (except Canadian)
- Glass transition temperature (T_g) decreased a small amount YoY

CDura**MAT**

FTIR Backsheets

Manufacturer	Backsheet
Canadian Solar	PVDF
Q Cells	PET
Mission Solar	PET
Panasonic	PET
LG	PET
Jinko	TPT
ltek	PET

Little to no change over time

Status and Final Steps

- Year 3 cores were extracted last week
 - Remaining characterization to be completed
- Sharing on the DuraMAT DataHub
- Remaining fielded modules transitioned to maintenance mode
- Developing fielded characterization tools to monitor materials aging (handheld Raman, N-IR, FTIR, ARC imaging, etc.)
- Documentation and reporting

DuraMAT Fielded Projects at Sandia

DuraMAT Module Library

Characterize material degradation from natural aging in commercially available photovoltaic modules.

BACKFLIP

A comparison of market-benchmark and emerging nonfluoropolymer-based, co-extruded photovoltaic backsheets.

BACKFLIP

Accelerated Aging -hydrolytic -photolytic

Materials characterization and analysis.

Sandia National Laboratories

Field Aging -New Mexico: hot/dry -Florida: hot/humid

67

Arbitrary Index	Backsheet	Construction
BS1	PO-1	Co-extruded
BS2	PO-2	Co-extruded
BS3	TPT	Laminate
BS4	APO	Co-extruded
BS5	PPE	Laminate
BS6	AAA	Co-extruded
BS7	KPf	Laminate

PO-based: BS1, BS2, BS4 PA-based: BS6 PET-based: BS3, BS5, BS7

DuraMAT

Electrical Performance

Albuquerque, NM

- Similar and moderate performance degradation for all backsheets fielded in ABQ, NM
- Ongoing analysis of FL modules
- Final comparison to accelerated

CDura**MAT**

CNREL

Electroluminescence

BS2 BS3 BS4

	BS1	BS2	BS3	BS4	BS5	BS6	BS7
Reference							
MiMo 1 24m							
MiMo 2 24m							
MiMo 3 24m							

Dura MAT

Keyence - air side *Cocoa, FL*

U.S. DEPARTMENT OF

DuraMAT

BERKELEY LAP

Keyence - sun side *Cocoa, FL*

Keyence - air side ABQ, NM

Keyence - sun side *ABQ, NM*

Gloss Albuquerque, NM and Cocoa, FL

1	85°C, 85%
2	65°C, 85%
3	45°C, 85%
а	0.8W/m², 65°C, 20%
b	0.55W/m², 57°C, 20%
с	0.55W/m², 65°C, ~80%
h	0.8W/m², 55°C, 20%

ENERGY

- Accelerated test samples saw ٠ great change for BS5
- Outdoor samples showed decrease in gloss for BS5 and BS7

Albuquerque, NM and Cocoa, FL

 b^*

Tensile Test Results

()Dura**MAT**

INREL

Tensile Test Results

DuraMAT

CNREL

FTIR

Albuquerque, NM and Cocoa, FL

ERKELEY LA

FTIR Albuquerque, NM and Cocoa, FL

Accelerated (NREL): A2: 0.8 W/m², 55°C, 20% RH A3: 0.8 W/m², 65°C, 20% RH

ERKELEY Ü

FTIR Albuquerque, NM and Cocoa, FL

Status and Final Steps

- Accelerated tests revealed more prominent degradation for BS3, 5, and 7 (PETbased); hygrometric tests resulted in most degradation
- Comparing all accelerated and fielded results
 - FTIR so far showing connections between
- Sharing on the DuraMAT DataHub
- Submitting a SPARK proposal to further study degradation of all backsheet layers
- Documentation and reporting

Thank you!

Elizabeth Palmiotti

ecpalmi@sandia.gov

