

A fluid solver for studying torsional galloping in solar-tracking PV panel arrays

Ethan Young, Xin He, Ryan King, David Corbus

October 12, 2020











### Motivation

- Complicating factors for tracker failure
  - Range of wind speeds and geographic locations
  - Unclear sources (galloping vs divergence)
  - Unclear stow guidance
- Understanding the fluid-structure interaction driving this instability using an open-source, validated model can improve panel stow guidelines and inform stabilizing designs.

[1] GTM and NEXTracker Webinar, Driving the Standard: Wind Testing, Solar Trackers, and Peer Review, December 10<sup>th</sup>, 2019 [2] PV Magazine Webinar, Can a tracker be as stable as a fixed tilt?, December 10<sup>th</sup>, 2019

[3] PV Magazine Webinar, High or low tilt angles for single-axis trackers in extreme winds – different approach, December 16<sup>th</sup>, 2019





### DuraMAT Enabled Parallel Study

#### **Goal:** Address PV resilience and dynamic instability



# Aeroelastic Model

Ζ

X

## Methodology

• A pressure correction scheme is used to solve the Navier-Stokes equations while enforcing incompressibility.

$$\rho \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} - \hat{\mathbf{u}}) \cdot \nabla \mathbf{u} \right) = -\nabla P + \mu \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$



 The fluid stress around the immersed surface creates a torque, T, at each node on each panel.

$$T_j = \int_{S_j} \tau dS \qquad \text{for } j = 1, 2, \dots, N$$

## Methodology

- Panels are treated as **rigid masses** linked with **rotational springs**.
- This mass-spring approximation is used to model the fluid-structure dynamics.

$$I_{y}\frac{d^{2}}{dt^{2}}\begin{bmatrix} \theta_{1}\\ \theta_{2}\\ \vdots\\ \theta_{N-1}\\ \theta_{N} \end{bmatrix} + \kappa \begin{bmatrix} 1 & -1 & 0 & \dots & 0\\ -1 & 2 & -1 & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & -1 & 2 & -1\\ 0 & \dots & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \theta_{1}\\ \theta_{2}\\ \vdots\\ \theta_{N-1}\\ \theta_{N} \end{bmatrix} = \begin{bmatrix} T_{1}\\ T_{2}\\ \vdots\\ T_{N-1}\\ T_{N} \end{bmatrix}$$



$$\begin{array}{c} y \\ \theta_1 \end{array} \\ \end{array} \\ \begin{array}{c} y \\ \theta_2 \end{array} \\ \end{array} \\ \begin{array}{c} y \\ \theta_3 \end{array} \\ \end{array} \\ \begin{array}{c} y \\ \theta_4 \end{array} \\ \end{array} \\ \begin{array}{c} y \\ \theta_4 \end{array} \\ \end{array} \\ \begin{array}{c} y \\ \theta_4 \end{array} \\ \end{array}$$

## Methodology

• A Laplacian smoothing strategy **preserves cell quality** near the panel surface during mesh motion.





Constant diffusivity: 
$$abla^2 \hat{x} = 0$$

Quadratic diffusivity: 
$$\frac{1}{d^2} \nabla^2 \hat{x} = 0$$

## Simulation Setup

#### Simulation Setup



#### Fluid-Structure Response



$$\theta = +7.5, \qquad \overline{U}_{in} = 40.5 \,\mathrm{m \, s^{-1}}$$
 Nrel | 10

#### **Pressure Interpretation**



NREL | 11

#### Effect of Wind Speed



Panel stability at  $\theta = +7.5$ 

#### Panel Stability



Panel stability across a range of wind speeds and stow angle pairs;  $\blacksquare$  = stable pair,  $\blacksquare$  = conditionally stable pair,  $\square$  = unstable pair.

## Field & Model Convergence



• Both the field campaign and the computational model indicate increased stability at negative stow angles.

#### Next Steps

#### Modeling Approach

- Implement improved stability criterion.
- Compounding effect of multiple panel rows.
- High-fidelity model to capture deformation effects.
- Field-Model Validation
  - Current simulations show good *qualitative* agreement to field measurements.
  - Still have a wealth of data to mine for the further refinement of both approaches.



