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 PV Backsheets 

Typical Multilayer Backsheet Structure Typical PV Module Structure 
(Typically multi-layered systems, but monolayer backsheets do exist) 

Primary function is to provide electrical isolation for safe 
operation 



A compromised backsheet can present a serious safety hazard 

 

 

 

 

 

    

     

   

   
      

PV Backsheets: Key Properties 

Key Properties 

Moisture Barrier 

Heat Stability 

UV Resistance 

Erosion Resistance 

Mechanical Stability 

Dielectric Strength 

Typical Multilayer Backsheet Structure 
(Typically multi-layered systems, but monolayer backsheets do exist) 

Accelerates other degradation modes e.g. corrosion 
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Fluoropolymer Backsheets 

• Historically, backsheets have largely been fluoropolymer-
based 
– Polyvinyl Fluoride (PVF) 
– Polyvinylidene Fluoride (PVDF) 
– Usually with a Polyethylene terephthalate (PET) core 

Fluoropolymer 

Fluoropolymer-Free 

An Overview of Backsheet Materials for Photovoltaic Modules VDMA – ITRPV, 2020 
DuraMAT Webinar May 2020 



 

            
         

 

 
 

       
   

  

Fluoropolymer-free Backsheets 

• Largely driven by cost reduction. Can be replaced with less expensive materials 
• Enables a reduction in processing costs through co-extrusion or coatings 
• Easier End-of-life handling* 

Co-extruded 

Polyamide, 
Polypropylene, 

Polyolefin 

Laminated 

PET 

Monolayer 

ETFE, PET 

Fluoropolymer-
Free 

*Aryan et al, A comparative life cycle assessment of 
end-of-life treatment pathways for photovoltaic 
backsheets, Prog. in PV, 2018 



    

 
 

   

   
               

      

  AAA: PA-based, coextruded 
backsheet introduced in 2010 

PA 

Co-Extruded Backsheets 

PA /PP/fibreglass 

PA 

Illustration of the co-extrusion process* 

Benefits of co-extrusion: 
• Eliminates lamination step 
• Eliminates need for adhesive 
• Reduces delamination between 

layers 
• Easier material modification 

(additives. fillers etc) *C. Thellen et al.: “Co-extrusion of a novel multilayer photovoltaic backsheet based on 
polyamide-ionomer alloy skin layers” in PVSEC, Amsterdam 2017 



  
           

       

    

     
    

    
 

   
   

 
 

 Co-Extruded Backsheets: AAA 

Failure is a 2-step process: 

Step 1: Microcracking / fracturing 
of the outer layer due to photo-
oxidation and crystallization of 
the polypropylene 

Step 2: Macrocracking, or 
through cracking, due to 
thermomechanical/mechanical 
strain 

Step 1 Step 2 
Owen-Bellini, M., Moffitt, S.L., Sinha, A. et al. Towards validation of combined-accelerated stress testing through failure 
analysis of polyamide-based photovoltaic backsheets. Sci Rep 11, 2019 (2021). 



Co-extruded Backsheets: Photomark 
Reflections 

Photomark Reflections – 255 (“PMR”) 

 

 

   
  

     
    

 

PA/Ionomer
PA 
High-Density Polyethylene (HDPE) 
PA 
PA/Ionomer 

• PA/Ionomer blended outer layers 
• PA intermediate layers 
• High-Density Polyethylene Core layer 
• TiO2 white pigment or carbon black pigment 
• Talc filler for dimensional stability 
• Co-extruded 



Photomark Reflections: Accelerated 
Aging

PMR failure

AAA failure

Owen-Bellini, M., et al. (2020). Advancing reliability assessments of photovoltaic modules and materials using combined-accelerated stress testing. Prog Photovolt Res Appl., 1–19. 

Hartman, K., et al. (2019). Validation of Advanced Photovoltaic Module Materials and Processes by Combined-Accelerated Stress Testing (C-AST). In Proceedings of the 46th IEEE PVSC, 2243–2248. 

PVDF failure



Photomark Reflections: Surface 
Degradation

• Increase in peaks at 1710cm-1 (FTIR): photo-oxidation of polyamide 

Surface microcracking of AAA 
attributed to UV photo-oxidation

• Microcracking was not observed in the aged PMR 

• Could be a result of the PA/Ionomer blended outer layer

PA/Ionomer

High-Density Polyethylene (HDPE)
PA
PA/Ionomer

PA



Photomark Reflections: Surface 
Degradation

• Increase in peaks at 1710 (FTIR): photo-oxidation of polyamide 
• Significant increase in peak at 1000 cm-1 (FTIR): Si-O-Si band

from talc mineral filler

• Higher amount of Mg detected on the 
surface (XPS): talc = Mg3Si4O10(OH)2

• Increase in surface roughness after aging 
(SEM): hypothesis of surface erosion 



Photomark Reflections: Structural 
Changes

• Identification of materials in the backsheet based on the position of their scattering peaks (WAXS) 
and thermal transitions (DSC)

• Quantification of changes in crystallinity of materials upon aging 
(DSC):

• 29% increase in enthalpy of fusion (ΔHm) of HDPE 
(proportional to degree of crystallinity (χC

(%))
• Small decrease in ΔHm of PA due to surface erosion
• No shift in crystallization peaks: no significant changes

in molecular structure and chain length

HDPE core

HDPE core

PA inner/outer

PA inner/outer

talc
ΔHm

WAXS

DSC



Photomark Reflections: Mechanical 
Degradation

• Trouser tear test: correlate the changes in material 
properties with backsheet mechanical properties

• Lower tear energies upon aging confirm backsheet
embrittlement caused by increased crystallization of HDPE 
core layer

• When tearing aged backsheet in TD, tear propagated in 
weaker MD: same as the crack leading to failure in C-AST

Yuen, P. Y., Moffitt, S. L., Novoa, F. D., Schelhas, 
L. T., & Dauskardt, R. H. (2019). Tearing and 
reliability of photovoltaic module backsheets. 
Progress in Photovoltaics: Research and 
Applications, 27(8), 693-705.

Pre-crack

Transverse 
direction (TD)

Machine direction (MD)



Photomark Reflections: Surface 
Degradation

• Trouser tear test: correlate the changes in material properties with 
backsheet mechanical properties

• Lower tear energies upon aging confirm backsheet embrittlement 
caused by increased crystallization of HDPE core layer

• When tearing aged backsheet in TD, tear propagated in weaker 
MD: same as the crack leading to failure in C-AST

Yuen, P. Y., Moffitt, S. L., Novoa, F. D., Schelhas, 
L. T., & Dauskardt, R. H. (2019). Tearing and 
reliability of photovoltaic module backsheets. 
Progress in Photovoltaics: Research and 
Applications, 27(8), 693-705.

Pre-crack

Transverse 
direction (TD)

Machine direction (MD)



Part 1 Conclusions

• Novel polyamide-based, fluoropolymer-free, co-extruded backsheet “PMR” showed 
improved durability and robustness than AAA and PVDF with C-AST 

• PMR backsheet ultimately failed in C-AST by through-thickness cracking
• Surface, structural and mechanical properties were investigated through advanced

material characterization techniques:
• Microscopic changes in surface roughness revealed surface erosion of the polyamide

outer layer and photo-oxidative degradation, but no microcracking
• Cause of failure attributed to the increase in crystallinity of the polyolefin core layer 

leading to embrittlement confirmed by lower tearing energy
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