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PV Backsheets

Typical Multilayer Backsheet Structure

Typical PV Module Structure

(Typically multi-layered systems, but monolayer backsheets do exist)
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PV Backsheets: Key Properties

Typical Multilayer Backsheet Structure
Key Properties

(Typically multi-layered systems, but monolayer backsheets do exist)
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Heat Stability Adhesive
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UV Resistance

Erosion Resistance

Mechanical Stability

A compromised backsheet can present a serious safety hazard

Dielectric Strength Accelerates other degradation modes e.g. corrosion
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Fluoropolymer Backsheets

* Historically, backsheets have largely been fluoropolymer-

based
— Polyvinyl Fluoride (PVF) 100% — gy -
— Polyvinylidene Fluoride (PVDF) o
80%
— Usually with a Polyethylene terephthalate (PET) core =,
5 oo 2
Micrograph for PVF/PET/PVF  s0% >
. ; § 40% E
-« PVF ; 30%
<« PET 20%
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<« PVF 0%
‘ 1 2019 2020 2022 2024 2027 2030
: ®m Kynar based (incl. KPE, KPK, KPx, KPf) ® Tedlar based (incl. TPT, TPE, TPC, TPX)
- —_— Adhes“le others (incl. PPE, CPC) m Polyolefin-core based (incl. PPP, AOE)
An Overview of Backsheet Materials for Photovoltaic Modules VDMA - ITRPV, 2020
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Fluoropolymer-free Backsheets

* Largely driven by cost reduction. Can be replaced with less expensive materials
 Enables a reduction in processing costs through co-extrusion or coatings
 Easier End-of-life handling*

Fluoropolymer-

Free

Co-extruded Laminated Monolayer

L Polyamide, L
Polypropylene, ETFE, PET

. Polyolefin
*Aryan et al, A comparative life cycle assessment of

end-of-life treatment pathways for photovoltaic
backsheets, Prog. in PV, 2018
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AAA: PA-based, coextruded

CO_ Extru d ed Backsh eets backsheet introduced in 2010
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Illustration of the co-extrusion process*

Benefits of co-extrusion:
* Eliminates lamination step
* Eliminates need for adhesive
 Reduces delamination between
layers

e Easier material modification
(additives. fillers etc) *C. Thellen et al.: “Co-extrusion of a novel multilayer photovoltaic backsheet based on
polyamide-ionomer alloy skin layers” in PVSEC, Amsterdam 2017
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Co-Extruded Backsheets: AAA

Surface microcracking

Failure is a 2-step process:

Macrocrack

Step 1: Microcracking / fracturing
of the outer layer due to photo-

oxidation and crystallization of oo R .‘l: _____ .
the polypropylene W | e A TR R T

Backsheet Core Layer gcwstauization , !

Inner Layer : E

Step 2: Macrocracking, or —

4+———— Strain —

through cracking, due to EVA
thermomechanical/mechanical ‘

strain

Glass
/_\_/ /—_\_/
Step 1 Step 2

Owen-Bellini, M., Moffitt, S.L., Sinha, A. et al. Towards validation of combined-accelerated stress testing through failure
analysis of polyamide-based photovoltaic backsheets. Sci Rep 11, 2019 (2021).
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Co-extruded Backsheets: Photomark

Reflections

Photomark Reflections — 255 (“PMR”)

I < PA/lonomer TOMARK:¢=WORTHEN

<« PA 71\

< High-Density Polyethylene (HDPE)

<« PA

bl PA/Ionomer What's better than a durable backsheet with no PET

or Fluoropolymers? How about a durable backsheet
with no interlayer adhesives?

That's right — Tomark-Worthen has created a

° PA/|onomer blended outer |aye rs revolutionary new backsheet based on a proprietary
. . polyamide alloy that is weatherable, dimensionally
* PA intermediate Iaye rs stable and cost effective - and it does not contain
. . any Fluoropolymer or PET layers and does not use
® ngh-DenSIty Polyethylene Core Iayer any adhesives! Our backsheet is not susceptible to

hydrolysis or UV degradation.

e TiO, white pigment or carbon black pigment
e Talc filler for dimensional stability
e Co-extruded
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Photomark Reflections: Accelerated

Aging

—

Damp Heat Light Soak Freeze x4
90°C 90°C N
-20°C 40°C
° 28% RH
X 7 . Rain S
System Voltage Mechanical Load System Voltage ain Spray
4 hours 4.5 hours 2 hours 2 hours 0.5 hours

—

Cold, Dark
o " 0°C -40°C -20°C 90°C
-40°C, 20% RH 6% RH 20% RH 20% RH 6% RH
Mechanical Load 0.8 Suns Static Load Static Load 1.9 Suns
System Voltage
1 hour 1 hour 1 hour 1 hour
Winter Winter to Spring Desert

PVDF failure PMR failure

. . 7 days
M Tropical B Multi-season s |

A L

I 35 days
AAA failure

|
135 days

Owen-Bellini, M., et al. (2020). Advancing reliability assessments of photovoltaic modules and materials using combined-accelerated stress testing. Prog Photovolt Res Appl., 1-19.

Hartman, K., et al. (2019). Validation of Advanced Photovoltaic Module Materials and Processes by Combined-Accelerated Stress Testing (C-AST). In Proceedings of the 46t IEEE PVSC, 2243-2248.
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Photomark Reflections: Surface

Degradation

* Increase in peaks at 1710cm? (FTIR): photo-oxidation of polyamide

Surface microcracking of AAA
attributed to UV photo-oxidation

FEEE e e e B e B

—— Aged 1000 cm”  »~ 2mm

naged « Microcracking was not observed in the aged PMR
;i 1710 cm™
9 * Could be a result of the PA/lonomer blended outer layer
S
S
3 N < PA/lonomer
< « PA
< High-Density Polyethylene (HDPE)
Pl ot it B o B | <+ PA
4000 3600 3200 2800 2400 2000 1600 1200 800 T « pA/lonomer

w, wavenumber (cm™)
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* Increase in peaks at 1710 (FTIR): photo-oxidation of polyar

* Significant increase in peak at
from talc mineral filler

D e o)
_Aged 1000 Cm-1 Lot

Unaged

1710 cm™’
\ 1610 cm™’

Absorbance (a.u.)

'371)0 cm™’ - J
2e
4000 3600 3200 2800 2400 2000 1600 1200 800

w, wavenumber (cm™)

Intensity (a.u.)

Intensity (a.u.)

+ Data t=0
- DataAr (t=1.5) Unaged
--- Fitt=0 Mg 1s

L —— FitAr (t=1.5) i

1310 1308 1306 1304 1302
Binding Energy (eV)
T T T T T
+ Datat=0
Aged
= DataAr (t=1.5)
--- Fitt=0 Mg 1s

.
t’+++

| —— FitAr (t=1.5) . .

+
+, T
b b ;**’ﬁg; §"i~

=t et

1310

1308 1306 1304 1302
Binding Energy (eV)

00 cr
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uv HighT

Outer layer
Toie — [OOSR
Erosion
HDPE core layer —— E>

PA mid layer ——

PA-lonomer “alloy” —

Higher amount of Mg detected on the
surface (XPS): talc = Mg,Si,0,,(0OH),

Increase in surface roughness after aging
(SEM): hypothesis of surface erosion
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HDPE core
DSC A

Photomark Reflections: Structural

— / \ PA inner/outer
g Cooling
* I|dentification of materials in the backsheet based on the position of tt © [——= \—j |
L — ond i
and thermal transitions (DSC) ks Heatng\?\_ i
e : HDPE core .. i
 Quantification of changes in WAXS crystallinit _ L wig |1 Heating
(DSC): W 1 1 1 ] 1 1 \\nfl 1 1 1 1
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Photomark Reflections: Mechanical

50

[ Junaged |
[ Aged

Degradation

* Trouser tear test: correlate the changes in material
properties with backsheet mechanical properties

 Lower tear energies upon aging confirm backsheet
embrittlement caused by increased crystallization of HDPE
core layer

e When tearing aged backsheet in TD, tear propagated in
weaker MD: same as the crack leading to failure in C-AST

Tearing Energy, G, (KJ/m?)

Transverse direction Machine direction

Pre-crack

Transverse
direction (TD)

Yuen, P. Y., Moffitt, S. L., Novoa, F. D., Schelhas,

]
:, - plastic deformation L. T., & Dauskardt, R. H. (2019). Tearing and
-l ; g around tear tip - reliability of photovoltaic module backsheets.
tot Progress in Photovoltaics: Research and

Auyor Applications, 27(8), 693-705.
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Photomark Reflections: Surface

Degradation

* Trouser tear test: correlate the changes in material properties with
backsheet mechanical properties

 Lower tear energies upon aging confirm backsheet embrittlement
caused by increased crystallization of HDPE core layer

* When tearing aged backsheet in TD, tear propagated in weaker
MD: same as the crack leading to failure in C-AST

Pre-crack

Yuen, P. Y., Moffitt, S. L., Novoa, F. D., Schelhas,
L. T., & Dauskardt, R. H. (2019). Tearing and
reliability of photovoltaic module backsheets.
Progress in Photovoltaics: Research and

Applications, 27(8), 693-705. Tra nsverse

direction (TD)

¥\ plastic deformation
- o around tear ti .
e t 2 P N Aa'l:ot
e Aoy
(C) g

§PDuraMAT INREL



Part 1 Conclusions

* Novel polyamide-based, fluoropolymer-free, co-extruded backsheet “PMR” showed
improved durability and robustness than AAA and PVDF with C-AST

* PMR backsheet ultimately failed in C-AST by through-thickness cracking

e Surface, structural and mechanical properties were investigated through advanced
material characterization techniques:
 Microscopic changes in surface roughness revealed surface erosion of the polyamide
outer layer and photo-oxidative degradation, but no microcracking

e Cause of failure attributed to the increase in crystallinity of the polyolefin core layer
leading to embrittlement confirmed by lower tearing energy
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