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Outline 

• Geospatial and climate data 
– Clear sky detection 
– Planning optimal string sizing for PV plants 
– Redefining climate zones for PV degradation analysis (in progress) 

• Time series data 
– Extracting module parameters from production power data (in progress) 

• Image data 
– Classifying and detecting cracks in electroluminescence images (in progress) 

• Natural language (text) data 
– Potential opportunities for applying ML techniques 
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Motivation – data filtering affects analyses! 

• Prior work has demonstrated that 
degradation rate calculations can be
sensitive to the type of data filtering
performed 

• Restricting the data set to periods of
clear sky results in more consistent
and reliable fits of degradation rate 

• But, how do we define a “clear sky”
period? 

Jordan, D. C., Deline, C., Kurtz, S. 
R., Kimball, G. M. & Anderson, M. 
Robust PV Degradation 
Methodology and Application. IEEE 
J. Photovoltaics 8, 525–531 (2018). 



   

 
 

             

    

Identifying clear sky periods by examining irradiance plots 

Generally clear 
Scattered clouds Persistent clouds 

Identifying clear sky periods is relatively easy to do “by eye”, at least
approximately.
How about doing this automatically? 



       

              
        
            

      

            

 

Data sets for fitting a clear sky model 

• We need both input data (GHI measurements) and known output data (is the sky clear) 
• We get GHI measurements from ground-based detectors in the MIDC network 
• We get known clear sky labels from satellite measurements via the NSRDB database 
• Some subtleties 

– difference in temporal (1 min vs 30 min) and spatial (on-site vs 4 km2) resolutions of MIDC vs. NSRDB 
– big assumption: both data sets give a consistent picture of irradiance and sky clarity 

• Generally OK, but some data cleaning performed to remove clear violations of this assumption 

MIDC Locations 



           

  

       
   

   

  
  

       
     
     
          
         
  

  

  

General procedure for using a labeled data set to develop a clear sky 
algorithm 

Trained ML 
model 

Transform every data point into a vector 
of many “features” or “descriptors” 

Labeled data set 
(examples) 

Feature vector 
for data point 

Classification 

Within a certain “time window” around the target data point: 
1. Difference of mean GHI and GHICS 
2. Difference of maximum GHI and GHICS 
3. Difference of line length of GHI vs. time curve and GHICS 

ML error metric 

ML model class 

4. Difference of standard deviation of slopes in GHI and GHICS 
5. Maximum difference in slopes between GHI and GHICS 

M. J. Reno and C. W. Hansen, “Identification of periods of clear sky irradiance in time 
series of GHI measurements,” Renew. Energy, vol. 90, pp. 520–531, 2016. 



           

  

   

  
  

  

  

        
  

 

General procedure for using a labeled data set to develop a clear sky 
algorithm 

Trained ML 
model 

Labeled data set 
(examples) 

Feature vector 
for data point 

Classification 

ML error metric 

ML model class 

We already described the labeled data set from 
NSRDB and MIDC 

MIDC Locations 



           

  

   

  
  

  

  

   

 
       

     

General procedure for using a labeled data set to develop a clear sky 
algorithm 

Trained ML 
model 

Labeled data set 
(examples) 

Feature vector 
for data point 

Classification 

ML error metric 

ML model class 

Score using the F0.5 function 

Leans towards high precision (filter out as many 
“unclear” points as possible at the expense of also 
filtering out some more “clear” data points) 



           

  

   

  
  

  

  

        

        
   

        
    

     

          
          
  

General procedure for using a labeled data set to develop a clear sky 
algorithm 

Trained ML 
model 

Labeled data set 
(examples) 

Feature vector 
for data point 

Classification 

ML error metric 

ML model class 

For the ML model class we found something interesting. 

We first attempted “conventional” ML like random forest 
and regularized regression models. 

These models gave good scores (both training and 
generalization), but visual inspection demonstrated 
some strange outliers from time to time. 

We believe (but did not rigorously prove) that the ML 
models are too flexible, and started to fit on incorrect 
labels in the training data. 



           

  

   

  
  

  

  

            
     

   

          
         

          
    

 
      

 
          

General procedure for using a labeled data set to develop a clear sky 
algorithm 

Trained ML 
model 

Labeled data set 
(examples) 

Feature vector 
for data point 

Classification 

ML error metric 

ML model class 

So we ended up ditching the ML models and just doing a 
traditional optimization to define static thresholds for 
the 5 features mentioned earlier. 

This is just like the prior work of Reno and Hansen, 
except the thresholds were determined with a data set 
and not ”by eye”. So we are using the data as a 
substitute for manual tuning of thresholds. 

5-dimensional parameter optimization was done using 
the help of ML (Gaussian Process with Gradient-boosted 
decision trees were used to help determine which points 
in the space to test based on past results until hitting 
convergence). 



           

  

   

  
  

  

  
         

       
   

General procedure for using a labeled data set to develop a clear sky 
algorithm 

Trained ML 
model 

Labeled data set 
(examples) 

Feature vector 
for data point 

Classification 

ML error metric 

ML model class 
With the trained model, we could now classify all our 
data points – checking against our data set as well as 
visual inspection of results 



       Results – optimized parameters give better scores on cross-validation 



       

      
       

     
   

Results – optimized parameters show visual differences in data quality 

Blue points are all points that would not have 
been considered clear, for one reason or the 
other, using the default PVLIB implementation 
of the Reno & Hansen method! 



  

       

               
          

          
       

      

 

Conclusions - clear sky classification 

• The use of machine learning and data-driven methods helped us generate a 
better clear sky model 
– But when there are problems in the data set, there are also problems in the ML 
models – so you need to be careful and also check results visually 

– The model also assumes that irradiance will match clear sky models; other 
approaches are possible (e.g., see B. Meyers “statistical clear sky”) 

• The updated thresholds have been contributed to PVLib-Python 

• A manuscript with full details is published in JPV 
Ellis, B. H., Deceglie, M. & Jain, A. Automatic Detection of Clear-Sky Periods From Irradiance Data. IEEE Journal of Photovoltaics 
998–1005 (2019). doi:10.1109/JPHOTOV.2019.2914444 



      
        

      

 

       

Outline 

• Geospatial and climate data 
– Clear sky detection 
– Planning optimal string sizing for PV plants 
– Redefining climate zones for PV degradation analysis (in progress…) 

• Time series data 
– Extracting module parameters from production power data (in progress…) 

• Image data 
– Classifying and detecting cracks in electroluminescence images (in progress…) 

• Natural language (text) data 
– Potential opportunities for applying ML techniques (ideas only!) 



     

  
  

 
 

 

   

         

 
 

  

Motivation: Increasing string length improves LCOE 

17
https://www.sma-america.com/industrial-systems/pv-power-plants.html 
https://www.nextracker.com/2016/11/nextracker-achieves-1-solar-tracker-global-market-share-according-to-gtm-research/ 

String Length: number 
of modules in series 

Lower Electrical BOS costs: 
Fewer wires, trenches, 
combiner boxes 

Longer strings give you: 

Lower tracker costs: 
e.g. Tracker row length up to 90 panels Higher voltage -- lower 

DC transmission losses 

Better site utilization 
Lower Installation labor: 
Fewer piles, less wiring 



  

 
             

 
            

      
        

  
  

  
 

  

                                                 
                 
       

                   
              

                
  

 

  
  

  

  
    

LCOE Impact Estimate

• Fu

18

36
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure 28. Q1 2018 U.S. benchmark: utility-scale PV total cost (EPC + developer), 2018 USD/Wdc

5.3 Utility-Scale PV Price Benchmark Historical Trends
Figure 29 shows the 77% (fixed-tilt) and 80% (one-axis tracking) reductions in utility-scale PV
system cost benchmarks between 2010 and 2018.22 Approximately 69% (fixed) and 63% (one-
axis) of those reductions can be attributed to total hardware costs, with module prices dropping 
81% over that period. An additional 11% (fixed) and 12% (one-axis) can be attributed to labor, 
which dropped 81% (fixed) and 84% (one-axis) over that period. The final 20% (fixed) and 25%
(one-axis) are attributable to other soft costs, including PII, sales tax, overhead, and net profit. 

alone; the one-axis tracker, non-union cost is the sum of the dark green and medium green bars; and the one-axis 
tracker, union cost is the sum of all three bars.
22 Each year’s PV system cost benchmark corresponds to the NREL benchmark calculted in Q4 of the previous year
or Q1 of the current year (e.g., 2010 = Q4 2009; 2017 = Q1 2017).

Fu, Ran, David Feldman, and Robert Margolis. 2018. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018. Golden, CO: National Renewable
Energy Laboratory. NREL/TP-6A20-72399. https://www.nrel.gov/docs/fy19osti/72399.pdf

Increase string length by 10%:
• Capital costs reduced by ~1.6%.
• LCOE reduced by 1.2%

Electrical BOS
Reduced by 10%

Install labor 
reduced by 5%

Structural BOS 
Reduced by 2%

Utility Scale PV Power Plant

Assumptions



       
      

        
    

     
     

       

         
        

    
   

    
   

         
    

   

   
   

   

   

NEC 2017: Multiple valid methods for determining the string length 
• 690.7(A)(1) Instruction in listing or labeling of module: 

The sum of the PV module-rated open-circuit voltage of 
the series-connected modules corrected for the lowest 
expected ambient temperature using the open-circuit 
voltage temperature coefficients in accordance with the 
instructions included in the listing or labeling of the 
module. 

• 690.7(A)(3) PV systems of 100 kW or larger: For PV 
systems with a generating capacity of 100 kW or greater, 
a documented and stamped PV system design, using an 

Method 1 (Traditional) uses 
lowest expected temperature 
and 1000 W/m^2. 

Method 2 (Site-specific modeling) industry standard method and provided by a licensed 
professional electrical engineer, shall be permitted. models system Voc over time 
– Informational Note: One industry standard method 

for calculating voltage of a PV system is published by 
Sandia National Laboratories, reference SAND 2004-
3535, Photovoltaic Array Performance Model 

19 



      

 

Site-specific String Length Determination. NEC 2017 690.7(A)(3) Compliant 

Some AHJs accept this, some don’t.We want to make this the standard! 
20 

http:don�t.We


   Does site-specific modeling work? 

21 
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This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure 2-3. PV modules deployed on the PERT at NREL, Golden, Colorado

2.2 Station Operations
Station operations included daily, weekly, and monthly maintenance. Each day, except for
weekends and holidays, the solar radiometers were cleaned, the solar tracker was checked for
proper operation, and the PV module soiling amount was estimated. As a further measure of
soiling, one (the reference PV module) of two identical PV modules was cleaned as a
comparative measure against the one not cleaned. Figure 2-4 is an example maintenance log
showing the daily maintenance activities. Weekly maintenance activities included checking
radiometer desiccants and domes or windows and the electrical connectors and wiring. Monthly
maintenance activities included checking the integrity of the PV module support structure and 
washing the PV modules if needed. PV modules were washed infrequently at all sites due to 
minimal soiling.

2.3 Quality Assessment
NREL retrieved the data each day via the internet and archived it in a database. QA methods
were implemented to exclude data not meeting quality thresholds from being included in data
distributed outside of NREL; consequently, data files are not serially complete. The QA methods
are based on those previously established to provide International Organization for
Standardization (ISO) 17025 [5] accredited data for PV modules installed on the PERT at NREL. 
They include checks for the reasonableness of the I-V curves, irradiances, PV module
temperatures, and meteorological data. The daily QA checks also facilitated identifying and 
resolving any operational problems in a timely manner. Appendix A provides a complete
description of the QA methods. 

4 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure 2-1. PV module and equipment deployment at the FSEC, Cocoa, Florida

Figure 2-2. PV module and equipment deployment at the University of Oregon, Eugene, Oregon

A second set of PV modules was deployed at NREL from August 2012 through September 2013. 
These PV modules were of the same manufacturers and models as the set of PV modules
deployed in Florida and Oregon. Their performance was measured on NREL’s performance and 
energy rating testbed (PERT) with the same type of equipment listed in Table 2-1. The PERT is
located at NREL’s Outdoor Test Facility building and has been measuring the performance of
PV modules since 1996. Figure 2-3 shows PV modules installed on the roof of the Outdoor Test
Facility. 
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This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure 2-1. PV module and equipment deployment at the FSEC, Cocoa, Florida

Figure 2-2. PV module and equipment deployment at the University of Oregon, Eugene, Oregon

A second set of PV modules was deployed at NREL from August 2012 through September 2013. 
These PV modules were of the same manufacturers and models as the set of PV modules
deployed in Florida and Oregon. Their performance was measured on NREL’s performance and 
energy rating testbed (PERT) with the same type of equipment listed in Table 2-1. The PERT is
located at NREL’s Outdoor Test Facility building and has been measuring the performance of
PV modules since 1996. Figure 2-3 shows PV modules installed on the roof of the Outdoor Test
Facility. 
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This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

3 Data and Format
This section of the user’s manual provides information on which files contain data for which PV
modules and how the files are formatted.

3.1 File Convention
The files contain comma separated variables (CSV). The naming convention uses the
deployment location and NREL PV module identifier as the file prefix, with the characters “csv”
as the file extension. Table 3-1 lists the PV modules, the file name corresponding to their
deployment, and pseudo manufacturer and model information for identifying PV modules of the
same manufacturer and model installed at multiple locations.

Table 3-1. File Names Corresponding to the PV Modules and Their Deployment Sites

CIGS1-001 Copper indium gallium
selenide

Manufacturer 5
Model F

Golden_CIGS1-001.csv

HIT05667 Amorphous silicon/
crystalline silicon (HIT)

Manufacturer 6
Model G

Cocoa_HIT05667.csv
Eugene_HIT05667.csv

HIT05662 Amorphous silicon/
crystalline silicon (HIT)

Manufacturer 6
Model G

Golden_HIT05662.csv

aSiMicro03036 Amorphous silicon/
microcrystalline silicon

Manufacturer 7
Model H

Cocoa_aSiMicro03036.csv
Eugene_aSiMicro03036.csv

aSiMicro03038 Amorphous silicon/
microcrystalline silicon

Manufacturer 7
Model H

Golden_aSiMicro03038.csv

       
  

     
 
    

 

                

 
          

   
 

    
 

 
   

    
   

 
 

 

   
  

 
    

  
 

  
  

  
 

  

 

                

 
          

 
           

  
 

 
  

 

 

                

 
          

 
           

  
 

 
  

 

 

                

   
  

 

   
   

  
  

 
 

  

   
  

 
   

     
  

 
 

     
  

 

     
  

 
 

     
  

 

     
  

 
 

     
  

 
 

     
  

 

     
  

 

     
  

 
 

     
  

 

    
 

  
  

 
 

    
 

  
  

 

    
 

  
  

 
 

    
 

  
  

 

   
   

  
  

 
 

   
   

  
  

 

   
  

  
  

 
 

   
  

  
  

 

 

                    
    

Field data validates modeling method 

• Used data from mobile performance and energy 
rating testbed (mPERT). 2014. 

• 33 modules across 3 locations with integrated I-V 
tracers. 

• 1-2 years Voc data at 5-10 minute intervals. 

NREL PV Module Manufacturer/ 
Identifier Technology Model File Names 
xSi12922 

xSi11246 

mSi460A8 

mSi460BB 

mSi0166 

mSi0188 

mSi0247 

mSi0251 

CdTe75638 

CdTe75669 

CIGS39017 

CIGS39013 

CIGS8-001 

Single-crystalline silicon 

Single-crystalline silicon 

Multi-crystalline silicon 

Multi-crystalline silicon 

Multi-crystalline silicon 

Multi-crystalline silicon 

Multi-crystalline silicon 

Multi-crystalline silicon 

Cadmium telluride 

Cadmium telluride 

Copper indium gallium 
selenide 
Copper indium gallium 
selenide 
Copper indium gallium 
selenide 

Manufacturer 1 
Model A 
Manufacturer 1 
Model A 
Manufacturer 1 
Model B 
Manufacturer 1 
Model B 
Manufacturer 2 
Model C 
Manufacturer 2 
Model C 
Manufacturer 2 
Model C 
Manufacturer 2 
Model C 
Manufacturer 3 
Model D 
Manufacturer 3 
Model D 
Manufacturer 4 
Model E 
Manufacturer 4 
Model E 
Manufacturer 5 
Model F 

Cocoa_xSi12922.csv 
Eugene_xSi12922.csv 
Golden_xSi11246.csv 

Cocoa_mSi460A8.csv 
Eugene_mSi460A8.csv 
Golden_mSi460BB.csv 

Cocoa_mSi0166.csv 
Eugene_mSi0166.csv 
Cocoa_mSi0188.csv 
Eugene_mSi0188.csv 
Golden_mSi0247.csv 

Golden_mSi0251.csv 

Cocoa_CdTe75638.csv 
Eugene_CdTe75638.csv 
Golden_CdTe75669.csv 

Cocoa_CIGS39017.csv 
Eugene_CIGS39017.csv 
Golden_CIGS39013.csv 

Cocoa_CIGS8-001.csv 
Eugene_CIGS8-001.csv 

Cocoa, FL Eugene, OR Boulder, CO 
W. Marion, A. Anderberg, C. Deline, J. del Cueto, M. Muller, G. Perrin, J. Rodriguez, S. Rummel, and T. Silverman, “User’s manual for data for validating models for pv module performance,” 
National Renewable Energy Laboratory, Golden, CO, Tech. Rep., 2014 22 
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This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure 2-3. PV modules deployed on the PERT at NREL, Golden, Colorado

2.2 Station Operations
Station operations included daily, weekly, and monthly maintenance. Each day, except for
weekends and holidays, the solar radiometers were cleaned, the solar tracker was checked for
proper operation, and the PV module soiling amount was estimated. As a further measure of
soiling, one (the reference PV module) of two identical PV modules was cleaned as a
comparative measure against the one not cleaned. Figure 2-4 is an example maintenance log
showing the daily maintenance activities. Weekly maintenance activities included checking
radiometer desiccants and domes or windows and the electrical connectors and wiring. Monthly
maintenance activities included checking the integrity of the PV module support structure and 
washing the PV modules if needed. PV modules were washed infrequently at all sites due to 
minimal soiling.

2.3 Quality Assessment
NREL retrieved the data each day via the internet and archived it in a database. QA methods
were implemented to exclude data not meeting quality thresholds from being included in data
distributed outside of NREL; consequently, data files are not serially complete. The QA methods
are based on those previously established to provide International Organization for
Standardization (ISO) 17025 [5] accredited data for PV modules installed on the PERT at NREL. 
They include checks for the reasonableness of the I-V curves, irradiances, PV module
temperatures, and meteorological data. The daily QA checks also facilitated identifying and 
resolving any operational problems in a timely manner. Appendix A provides a complete
description of the QA methods. 

 

                

 
          

   
 

    
 

 
   

    
   

 
 

 

   
  

 
    

  
 

  
  

  
 

  

      
    

  

                    
    

      P99.5 Voc 

Simulated data agrees with field measurements to 1.5% 
Mobile performance and energy 
rating testbed (mPERT), 

Histogram of measured vs. modeled Voc 

High Accuracy! 

W. Marion, A. Anderberg, C. Deline, J. del Cueto, M. Muller, G. Perrin, J. Rodriguez, S. Rummel, and T. Silverman, “User’s manual for data for validating models for pv module performance,” 
National Renewable Energy Laboratory, Golden, CO, Tech. Rep., 2014 23 



      

     
   

   
  

    
     

    
        

   
     

     

Adding in safety factors using an uncertainty analysis 

Air temperature uncertainty due to 
use of NSRDB - location dependent 

? 

Variation in Voc due 
to manufacturing 
inhomogeneity 

Increase in minimum temperatures 2.4 C/35 yrs 
Wind speed 0.5 to 1.5x 

1.1 to 1.3, if not in dataset. 
Ground albedo varies from 0 to 1. 
Shading for first and last hour of the day 
Isc degrades at 0.75% per year 
Voc degrades at 0.15% per year 
10% change in temperature coefficient 
Default uses no loss, add top-glass reflection 

24 

http:Windspeed0.5to1.5x


     
    

  

     
    

  

   
     

   
     

          

   

        

And remember, you will be at VMPP most of the time, not Voc … 
NOTE: System operates mostly at max power point, not open-circuit! 

P99.5: Use site-specific modeling of Voc 
over 18 years, find 99.5 percentile Voc 

Hist: Use site-specific modeling of Voc over 
18 years, find highest ever predicted Voc 

Day: uses 1000 W/m^2 and extreme annual 
mean minimum design dry bulb 
temperature during daytime (GHI>150 
W/m^2) 

Trad: uses 1000 W/m^2 and extreme annual 
mean minimum design dry bulb 
temperature. Unnecessarily conservative. 

Add safety factor based on sensitivity analysis. 
25 



 

      

     
   

     
    

How much improvement from using site-specific modeling? 

~10% Longer strings are acceptable using site-Higher improvement in mountainous regions: 
specific modeling compared to traditional! extreme cold during nighttime 

Simulation: Fixed-tilt, south at latitude tilt, Voc temperature coefficient -0.35%/C, n_diode = 1.2 
26 



     
    

       

      
   

        
    

   
     

   

Conclusion 
• Using site-specific Voc modeling, string lengths can be 

increased by ~10% compared to traditional method. 
• Potentially reduces LCOE by ~1.2% just by reorganizing 

strings. 
• NEC-2017 compliant method (trying to get explicit 

footnote into NEC guidelines) 
• Site-specific string length design is now easy for anyone to 

perform using a simple web tool. 
• Method available as open-source python module. 
• Bifacial modeling also possible (simple method on web, 

more accurate modeling in Python code) 

https://github.com/toddkarin/vocmax 
Karin & Jain, “Photovoltaic String Sizing using Site-Specific Modeling”, 
accepted for publication, IEEE Journal of Photovoltaics 

https://pvtools.lbl.gov 

27 

https://pvtools.lbl.gov/
https://github.com/toddkarin/vocmax


      
        

      

 

     

Outline 

• Geospatial and climate data 
– Clear sky detection 
– Planning optimal string sizing for PV plants 
– Redefining climate zones for PV degradation analysis (in progress) 

• Time series data 
– Extracting module parameters from production power data (in progress) 

• Image data 
– Classifying and detecting cracks in electroluminescence images (in progress) 

• Natural language (text) data 
– Potential opportunities for applying ML techniques 



 
 

 

 
 

 

 

  
 

  
   
    

 

Goal 
The current standard, 
Koppen-Geiger, was 
developed for botany and 

• We want a scheme to determine 
which geographical locations are
likely to see similar types and
magnitudes of PV degradation 

• This will help move us away from
a uniform degradation rate
estimation 

• Can also help design climate—
specific protocols for testing PV
modules 

places a region from 
Mexico to Canada in the 
same zone 
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Methods 
• Dataset: PV stressors calculated using NASA global land data assimilation system 

(GLDAS), incorporating ground and surface measurements. 01/2010 – 01/2019. 
• Module temperature calculated using PVLIB, open-rack polymer-back and roof-

mount glass-back, GHI = POA. 

✓ 
Ea 

◆ 
1 

Z ✓ 
Ea 

◆ 
Activation energy 1.1 eV 

Stressors: 
• Arrhenius weighted Equivalent 

exp - = 
t2 

exp - dt 
module temperature (Teq) kB Teq t2 - t1 t1 

kB Tm(t) 

Module Temp 
t21 

Z 
dTm

• Temperature cycling C = dt 
t2  t1 t1 

dt 

1 
Z t2 

• Mean specific humidity H = SH(t)dt 
t2 � t1 t1 

• UV stress UV = 0.05 ⇥ GHI 
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Define zones using thresholds on temperature, humidity and wind stressors 

Define 5 wind zones to to Define 9 temperature and 5 humidity 
split difference between zones based on “equal area” approach. 
hurricane, tornado regions 
and less extreme wind zones. 
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PVCZ vs. KG KG zone places regions from Mexico 
to Canada into a single zone (Bk). PVCZ puts these areas into 

3 different zones. 
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http:PVCZvs.KG


  

     
     

    
 

 
     

 

     
  

Conclusions and Outlook 

• We are developing a climate 
zone scheme specific to PV 
degradation. 

• Data freely available on datahub, 
open-source python package and 
web tool. 

• Difficult to know how well it 
“works” – ideas welcome 

• Future work is to analyze how to 
best combine stressors into zones 
that reflect real PV degradation 

https://github.com/toddkarin/pvcz https://pvtools.lbl.gov/pv-climate-stressors 
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https://pvtools.lbl.gov/pv-climate-stressors
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Outline 

• Geospatial and climate data 
– Clear sky detection 
– Planning optimal string sizing for PV plants 
– Redefining climate zones for PV degradation analysis (in progress) 

• Time series data 
– Extracting module parameters from production power data (in progress) 

• Image data 
– Classifying and detecting cracks in electroluminescence images (in progress) 

• Natural language (text) data 
– Potential opportunities for applying ML techniques 



      

  

 

        
  

 

Can we learn about module health from operating data? 

Lots of potential Operating data 

Big PV power plant 
problems 

Goal: Use operating data to extract module health without 
costly onsite surveys 
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The recently reported “Suns-VMP” method provides a potential method 

1. 
Sun, X., Vamsi, R., Chavali, K. & Alam, M. A. Real‐  time monitoring and diagnosis of 
photovoltaic system degradation only using maximum power point — the Suns ‐ Vmp method. 
Progress in Ph 1–12 (2018). doi:10.1002/pip.3043 36 

https://doi.org/10.1002/pip.3043
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PV-Pro Project: Try to generalize Suns-Vmp over large production data in 
the DuraMat data hub 

PRODUCTION DATA PV-PRO Application 

Methods BIG data analysis • Filter power data 
• Meteorological data 

De
gr
ad

at
io
n
m
od

e 

• Circuit model More accurate 
• Parameter estimation power 

predictions • Uncertainty analysis 
Technology 

Output 
I-V Parameters Time series 
Rseries, Voc, Isc, Bvoc, … database 

Actionable analytics 
Solder bond damage detected 

Degradation Mode Estimates 
Soiling, PID, Encpasulant 
discoloration, solder bond failure 
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Maximum power point curve fit

38

Use equations for 6 parameter single diode model.

Parameter Fit Datasheet

Reference photocurrent 8.6 A 8.5 A

Reference saturation current 0.8 nA 0.7 nA

alpha_isc +0.023%/C +0.07 %/C

ndiode 1.06 CEC: 1.03

Shunt Resistance 363 Ohm CEC: 181 Ohm

Series Resistance 0.50 Ohm CEC: 0.23 Ohm

11

2. SINGLE DIODE MODELS

A model for the electrical characteristic of a solar cell (e.g., [2], Eq. 1) can be derived from
physical principles (e.g., [3]) and is often formulated as an equivalent circuit comprising a
current source, a diode, a parallel resistor and a series resistor (Figure 1). For a module
comprising SN identical cells in series, use of the Shockley diode equation and summation of the
indicated currents results in the single diode equation for the module’s I-V characteristic ([3], Eq. 
3.154): 

exp 1S S
L O

th SH

V IR V IRI I I
nV R

ª º§ ·+ +
= − − −« »¨ ¸

© ¹¬ ¼
(1)

where
LI is the photo-generated current (A),

OI is the dark saturation current (A),
n is the diode ideality factor (unitless),
th S CV N kT q= is termed the thermal voltage (V) for the module, which is determined 

from cell temperature CT (K), Boltzmann’s constant k (J/K) and the elementary
charge q (coulomb),

k is Boltzmann’s constant ( 231.38066 10  J/K−× ),
q is the elementary charge ( 191.60218 10  coulomb−× ),

SR is the series resistance (Ω),

SHR is the shunt resistance (Ω).
In this report, values for SR and SHR are considered at the module level; average values for the
cells comprising a module can be obtained from the module values (e.g., [7]). Figure 2 displays
an example I-V characteristic.

Figure 1. Single diode equivalent circuit for a PV cell or module.



  

          
  

  
       
      

          
  

        

Conclusions and outlook 

• The Suns-Vmp method is a strategy to use maximum power point data to 
extract I-V curve information 

• Our goal is to: 
– Extend the Suns-Vmp method (e.g., get Voc values before the inverter kicks on) 
– Improve the stability, reliability, and consistency of the Suns-Vmp method 
– Apply Suns-Vmp over a large data set (e.g., PVFleets) to determine degradation of 
circuit parameters over time 

• Preliminary results are promising, but many open questions remain … 
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Outline 

• Geospatial and climate data 
– Clear sky detection 
– Planning optimal string sizing for PV plants 
– Redefining climate zones for PV degradation analysis (in progress) 

• Time series data 
– Extracting module parameters from production power data (in progress) 

• Image data 
– Classifying and detecting cracks in electroluminescence images (in progress) 

• Natural language (text) data 
– Potential opportunities for applying ML techniques 



   Goal – automatically analyze electroluminescence images for cracks 



         

 
  

  
   

  
   

 
  
   

   

Current status – can automatically segment images (separate module and 
cells) 

detection algorithm 

• 100% success rate 
on 47 indoor 
module images 

• Robust to tilting, 
objects on side of 
module 

• ~0.4 sec per image 

Custom line 
Binary threshold 

Perspective transform 
each cell & crop out 



 

    
        

   

   

         
       

 
     

 

Next steps 

• Obtain a more diverse image library 
– PVEL may be supplying a large library of images 
– Peter Hacke has sent some images 

• Hand-label cell images by crack category 

• Train a neural network model to automatically classify the cracks 
– Many methodological details to work out and test 

• Note that “cracked” versus “uncracked” cell classification via neural network 
was reported previously by Case Western 

Karimi, A. M., Fada, J. S., Hossain, M. A., Yang, S., Peshek, T. J., Braid, J. L. & French, R. H. Automated Pipeline for Photovoltaic Module Electroluminescence Image 
Processing and Degradation Feature Classification. IEEE Journal of Photovoltaics 1–12 (2019). doi:10.1109/JPHOTOV.2019.2920732 

https://doi.org/10.1109/JPHOTOV.2019.2920732


      
        

      

 

     

Outline 

• Geospatial and climate data 
– Clear sky detection 
– Planning optimal string sizing for PV plants 
– Redefining climate zones for PV degradation analysis (in progress) 

• Time series data 
– Extracting module parameters from production power data (in progress) 

• Image data 
– Classifying and detecting cracks in electroluminescence images (in progress) 

• Natural language (text) data 
– Potential opportunities for applying ML techniques 



            
        

There is a lot of information in text sources, but unfortunately one cannot 
read through it all. Could ML do this instead? 

NLP algorithms 

papers to read “someday” 
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Goal: collect and organize knowledge embedded in the materials science 
literature 

We have extracted ~2 
million abstracts of 
relevant scientific articles 

We use natural language 
processing algorithms to 
extract knowledge from 
all this data 
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Developed algorithms to automatically tag keywords in the abstracts 
based on word2vec and LSTM networks 

Weston, L. et al Named Entity 
Recognition and Normalization 
Applied to Large-Scale 
Information Extraction from 
the Materials Science 
Literature. J. Chem. Inf. Model. 
(2019). 
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Now we can search! 
Live on www.matscholar.com 

48 

http:Liveonwww.matscholar.com


      You can also analyze abstracts on matscholar.com 
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http:Youcanalsoanalyzeabstractsonmatscholar.com


     

      
         

           

         
              
           

   

What’s different versus, say, Google Scholar? 

• Domain-specific entity normalization 
– Recognizes that “CdTe” and “TeCd” are the same thing 
– Recognizes that “XRD” and “x-ray diffraction” are the same thing 

• We can train vector representations of words that have interesting and 
surprising properties 
– The word vectors can make useful descriptors for machine learning algorithms 
– The word vectors can be used to predict “gaps” in the research literature, such as 
what materials should likely be studied for an application but haven’t thus far 

• Looking for applications in solar! 
Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Persson, K. A., Ceder, G. & Jain, A. Unsupervised word embeddings capture 
latent knowledge from materials science literature. Nature 571, 95–98 (2019). 50 



 

          
    

    

    
 

  

   
   

 
   

    
    

 

    

     

     
    

Overall conclusions 

• There are a spectrum of opportunities for applying data analytics and 
machine learning to solar PV research 

Do what we’ve done before, 
but improve things with data 

Examples: 
• refine Reno and Hansen 

thresholds for clear sky 
detection using data analysis 

• Improve and apply the Suns-
Vmp method to large data sets 

Do things automatically that 
typically would be done 
manually 

Examples: 
• Formalize and automate the 

procedure for calculating string 
lengths 

• Classify images into cracked / 
uncracked 

Do things that we couldn’t 
hope to do manually 

Examples: 
• Analyze large amounts of text 

data for advancing solar 
research? 
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