

DuraMAT webinar (updated from, includes NIST/UL workshop) Monday, 2022/1/10, 13:00 MT

"BACKFLIP: A Comparison of Emerging Non-Fluoropolymer-Based, Co-Extruded PV Backsheets to Industry-Benchmark Technologies"

Comparison of market-benchmark BACKsheet technologies to novel non-FLuoro-based co-extruded materials and their correlation and ImPact on PV module degradation rates (<u>BACKFLIP</u>)

Naila M. Al Hasan, Rachael L. Arnold, Bruce King, <u>David C. Miller*</u>, Jimmy M. Newkirk, Emily Rago, Laura T. Schelhas, Archana Sinha, Kent Terwilliger, Michael Thuis, and Soňa Uličná

*presenting today, David.Miller@nrel.gov

rk 🚦

Sandia National Laboratories

SLAC NATIONAL ACCELERAT LABORATOR

Present, Future, and Technical Project Motivations

Historically, most backsheets made with **laminated PET core**. **Co-extruded polyolefin** materials explored here.

-Pros: lower manufacture cost, simplifies RTI (no adhesives).

-Con: may facilitate through-thickness cracking.

-Unknown: durability of new materials.

Country regulations may require fluorine-free backsheets:

-Contain no toxic materials.

-Preserve raw resources.

-Recyclable, lower carbon footprint.

•What to measure, how?

-Critical characteristics and their correlation not fully established. •How to age?

-Connection between accelerated tests and field not established.

The Sandia National Laboratories

~340 Million Solar Panels!!!

Growth of global PV capacity (GW) | 2015-2022

[1] "Solar PV – Renewables 2020 – Analysis," *IEA*. https://www.iea.org/reports/renewables-2020/solar-pv (2021/4/13).

Look for in This Presentation

Connection between surface- and bulk-degradation is further compared, including:

- •Surface morphology (microscopy) relative to surface roughness (gloss).
- •Damage catalysis in MiMos vs. coupons (FTIR).
- •Breakdown voltage in BS-6 (AAA) and other backsheets.

Recent references:

【
】
DuraMAT

Thuis et. al., J PV, in press, https://doi.org/10.1109/JPHOTOV.2021.3117915. Uličná, et. al., Proc Euro PVSEC Conf, 2021, 4CO.2.3

Materials and Test Conditions for the BACKFLIP Study

Backsheets:

- •Benchmark (TPT, PPE, KPf).
- •Known bad (AAA).
- •Developmental (PO's, APO).

Arbitrary	Backsheet	Construction	Thickness	Comment	
Index			[AVG±2 S.D.]		
			(mm)		
BS-1	PO-1	Coextruded	0.35±0.01	In Development	
BS-2	PO-2	Coextruded	0.35 ± 0.02	In Development	
BS-3	TPT	Laminate	$0.32{\pm}0.01$	Traditional (reference)	
BS-4	APO	Coextruded	$0.35 {\pm} 0.01$	Recently developed	
BS-5	PPE	Laminate	0.36 ± 0.01	Contemporary	
BS-6	AAA	Coextruded	0.33 ± 0.02	Known Bad	
BS-7	KPf	Laminate	$0.29{\pm}0.00$	Contemporary	

Accelerated aging:

- •Hygrometric (3x, including IEC 61215 "Damp Heat") $\rightarrow E_{a.eff}$.
- •UV weathering (2x, IEC TS 62788-7-2) $\rightarrow E_{a,eff}$.
- •UV weathering (2x, custom) \rightarrow effect of H₂O spray.

Arbitrary Experiment Index	UV Irradiance (W·m ⁻² at 340 nm)	MiMo Temperature (°C)	Chamber Relative Humidity (%)	Water Spray?
1	0	85	85	Ν
2	0	65	85	Ν
3	0	45	85	Ν
a (A3)	0.8	69	20	Ν
b	0.55 In Cl	59 Daractoriza	20	Ν
С	0.55		~80%	Y
d (A2)	0.8	59	20	N

Specimens and Locations Characterized

Accelerated Testing in the BACKFLIP Study

Coupon and MiMo specimens in Xe UV chamber (inside the carousel)

Coupon and MiMo specimens in Xe UV chamber (outside the carousel)

• **UV weathering** performed in high spectral fidelity Atlas "Weather-ometer" Xe lamp (ASTM D7869) chambers.

17 cm MiMo size avoids shading between carousel rows. \Rightarrow ¼ cell MiMo's used at NREL. Removable cables, with j-box end caps.

• Hygrometric aging performed in separate dark chambers.

Coupon and MiMo specimens in hygrometric chamber

The Specimen Temperature Was Verified for UV Weathering

- •Xe sources emit UV, VIS, and NIR light \Rightarrow heating above chamber temperature likely.
- •MiMos and coupons may achieve different temperatures.

Takeaways:

- •Specimen temperature stabilizes ~15-30 minutes.
- •Minimal (1-2°C) difference center and corner.
 - \rightarrow 17 cm specimens still small.
- •Modest (up to 4°C) difference coupons and MiMos.
 - \rightarrow Absorptance of cell, geometry + heat transfer.
- •Verified temperature will be used for Arrhenius analysis.

Kit from previous study, including wireless transmitters and their housing used here.

Temperature verification for "b" experiment.

Grayness From EL Corroborates I-V Performance Change

Surface Integrity of MiMo Air Side Surface From Optical Microscopy

•BS-4, BS-6: biaxial mud crack geometry presumably results from misfit strain.

- •BS-6: smaller incipient micro-cracks in 85°C/85% RH.
- •BS-5: micro-cracking and delamination in 85°C/85 % RH.

Changes in AVG[Gloss] BS-5, -6 Identified

•Greatest initial gloss: BS-5, -7, then -1, e.g. 85°.

•Gloss reduced BS-5 (greatly), -6 (slightly), at all incident angles in UV weathering, e.g., 60°.

•Gloss reduced (slightly) **BS-6** throughout hygrometric aging, e.g., 60°.

•BS's with low gloss value remain low (may seem less affected), all experiments.

•Air side: similar trends observed between MiMos (center & corner) and coupons (center).

Comparison of AVG[gloss] at MiMo center for air side BS's through initial 5 experiments.

Comparison of AVG[gloss] at coupon center for air side BS's through initial 5 experiments.

Changes in Δ [Gloss] of Backsheets Identified

- Base values (AVG) distinguish the BS's;
 change (Δ) distinguishes their degradation.
- •Gloss reduced BS-5, at all incident angles in UV weathering, e.g., 60°.
- •Gloss reduced **BS-6** at all incident angles in UV weathering. Thermal activation observed through hygrometric aging, e.g., 60°.
- •Other BS's also distinguished for Δ [gloss], e.g. in UV weathering.

•Spikes at read points observed, e.g. 1000 h. Compare MiMos and coupon results.

と
DuraMAT

Comparison of Δ [gloss] at coupon center for air side BS's through initial 5 experiments.

ENCE BERKELEY NATIONAL LABORATORY

SLAC NATIONAL ACCELERATOR LABORATORY 11

Gloss Confirms Surface Roughening for Artificial Aging

Gloss: 100 = polished glass reference; 0 = matte.
Decrease in gloss indicates roughening of the surface, e.g., texturing, erosion, or cracking.
Gloss immediately identifies BS-5.
Not obvious in microscope. More than meets the eye?
Gloss confirms BS-6 affected, both UV- and hygro-aging.

https://www.sciencedirect.com/topics/chemical-engineering/gloss-measurement

Regarding gloss measurements:

- •Gloss might be another method to identify micro-scale cracking.
- -Optimize λ and θ to feature size \Rightarrow PV BS specific instrument & method. (Obtain a gloss scale that might identify BS-4 after UV).
- •-Or- quantify surface roughness directly (profilometer, interferometer, etc).

Method of Comparing the Effect of Acetic Acid (MiMos vs. Coupons)

- •Goal: verify adverse effects of acetic acid. (Possible catalyst that slowly escapes during aging.)
- ●Greatest concentration between cell and front glass. -Acid blocked from backsheet by cell. ⊗
- ●Next most concentrated location: adjacent to cell. ⊖
 - -Double thickness EVA (source), far from MiMo edge. (Primary mass transport through BS).

【
〕
DuraMAT

LAWRENCE BERKELEY NATIONAL LABORATORY

•Compliant laminate \rightarrow Extract 1 cm x 2 cm BS sample using box cutter.

Spectral Differences From FTIR of MiMos

•Changes observed, both BS-6 coupons and MiMos:

FTIR spectra for A2 UV weathering.

- •Notable peak enhancement at 1102 cm⁻¹ for all replicate MiMos.
- •Catalytic effect of acetic acid proposed:

-3282, 2912 cm⁻¹. 1710 cm⁻¹. 1102 cm⁻¹.

- Lyu et. al., https://doi.org/10.1002/pip.3260.
- •No other notable MiMo-specific differences observed, first 5 experiments.

Morphological Differences From FTIR of MiMos

●85°C/85%: core crumbled extracting PET BS's!
-Rank by damage: BS-5 (PPE) > BS-7 (KPf) > BS-3 (TPT).
-85°C/85%, c (H₂O spray): core *also* cracked for coupons.
-Preliminary result: c (H₂O spray) more destructive than 85°C/85%.
-85 ℃/85% not field representative (often 2000h > 200y, doi: 10.1109/PVSC.2013.6744112).

MiMo specimen extraction site, 85°C/85% 4000h.

BS-4 specimens readily extracted after 85°C/85%!

(BS + EVA) readily removed from front glass.
Not quantified, but suspect reduced interfacial adhesion.
MiMo sun side discolored with subsequent photobleaching.
see: https://www.nrel.gov/docs/fy21osti/80362.pdf
Will c (H₂O spray) be damaging like 85°C/85%?

MiMo specimen extraction site, 85°C/85% 4000h.

A Modest Effect of Aging Was Observed for V_{BD} of BS-6 (AAA)

70

60

50

40

30

20

10

0

25

Λ

BS-6: 1: AVG[all]

UV

A3

A2

b (dry)

1000

2000

t, cumulative time at read point (h)

c (spray)

hyprometric:

85°C/85% RH

: 65°C/85% RH

45°C/85% RH

3000

4000

V_{BD} (Weibull scale parameter) (kV)

ਨੇ

- V_{BD} can only be consistently measured for BS-6, i.e. <100 kV.
- •Possible reduction of V_{BD} (α) with aging.
- •Decrease in variability (β) with aging.
- •A modest reduction in V_{BD} (α) was previously observed in the development of the V_{BD} test in IEC TS 62788-2.

V_{BD} Suggests Bulk Damage in Hygrometric Aging

 Failure function, "F": 0% if all V_{BD} > 100 kV; 100% if all V_{BD} < 100 kV.
 No overt aging trend through UV weathering.
 -BS-6 (AAA) always measurable.
 -Surface (micro-cracking BS-4, BS-6; Δgloss BS-5, BS-6; FTIR BS-2,-4, -5,-6) vs. bulk (V_{BD} no Δ). •Failure function, "F": 0% if all $V_{BD} > 100 \text{ kV}$; 100% if all $V_{BD} < 100 \text{ kV}$.

- •No overt aging trend through UV weathering.

们DuraMAT

•F[remaining BS's] increased through hygrometric aging. -Compare for t > 2000 h.

-Surface (micro-cracking BS-5, BS-6; ∆gloss BS-6) vs. bulk (cutting BS-3, -4, -5, -7; V_{BD} all).

V_{BD}: Tailoring PV BS Performance; Verifying Surface & Bulk Connection

Remember from This Presentation

While verification of degradation is confirmed in additional characterizations, the connection between surface and bulk degradation remains limited:

- •Gloss confirms surface roughening of PPE, AAA. -Standard equipment not optimized for PV BS's. Other methods exist besides Δ gloss.
- •Catalytic effect acetic acid confirmed from AAA MiMos.
- •Greatly accelerated PET core damage for 85°C/85% on extraction of: BS-3 (TPT), BS-5 (PPE), BS-7 (KPf) MiMos. MQT 13, H₂O spray not field-based tests.
- •Modest ΔV_{BD} observed through indoor aging of AAA.
- •Other BS's: $V_{BD} > 100 \text{ kV} >> 8 \text{ kV} \rightarrow BS's$ thicker than needed.
- •Minimal ΔV_{BD} steady state aging \rightarrow more advanced-aging may help relate surface, bulk damage.

Acknowledgements

The authors would like to thank BACKFLIP contributors including:

Allen Anderberg, Paul Ndione, Greg Perrin (NREL); Ashley Maes (SNL); Peter Pasmans, Chris Thellen (Endurans), Kurt Van Durme (Endurans); Frederic Dross, Robert Janssen, Sven Kreisig, Milica Mrcarica, Nicola Sicchieri, Nicoleta Voicu (DSM).

Note: DSM Advanced Solar B.V. is now Endurans Solar Solutions B.V.

Funding was provided as part of the Durable Module Materials Consortium (DuraMAT), an Energy Materials Network Consortium funded under Agreement 32509 by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. This work was authored in part by the NREL, operated by Alliance for Sustainable Energy, LLC for the US DOE under contract no. DE-AC36-08GO28308.

If you have interest in UV weathering, see PVQAT TG5, e.g. https://www.pvqat.org/project-status/task-group-5.html

The DuraMAT BACKFLIP Project Approach

