

Data Analytics for Solar PV: Case Studies in EL Imaging and Re-Analysis of Field Data

Xin Chen, Baojie Li, Anubhav Jain (LBNL)

DuraMAT Webinar

April 11, 2022

CONTENT

PART 1 Automatic Defect Identification in Electroluminescence (EL) Images of Solar Modules

Field PV Data Mining Using PVPRO for Degradation Analysis

OUTLINE:

- Automatic module transform and cell crop
- Automatic defect identification with deep learning
- Analyze position distribution of defects on solar modules
- Automatic crack segmentation with deep learning
- Predict worst-case degradation area based on crack patterns
- Explain the mechanism underpinning the correlation between crack features and degradation (IV data)
- PV-Vision: Open-source package for EL image analysis of PV modules

-https://github.com/hackingmaterials/pv-vision

Background

- The power loss of solar modules is considered a threaten to the durability of the solar cells
- Cracks can propagate and lead to the electrical isolation and accelerate the degradation rate
- Other defects induced by fire, humidity, etc. can also cause power loss
- Electroluminescence imaging is used to inspect defects on solar modules
- How do cracks influence degradation?
- How to collect the features of the cracks from thousands or more solar modules?
- How to quickly determine whether the module in field needs to be replaced due to defects?
- Is there correlation between EL images and IV parameters (which determines degradation)?

Electroluminescence image of solar module in lab

[1] N. Shiradkar, "Key Results from All India Survey of PV Module Reliability: 2016," in NREL PV Reliability Workshop, Lakewood, CO, 2018.

....

Raw image

Image after binary threshold

3000

3500

Schematic diagram of splits

Crop out

Around 30,000 single cells cropped out with ~90% successful rate, excluding truncated(~3%) or poorly exposed(~10%) pictures

Dura**MAT**

Image preprocess

Deep learning methods

U.S. DEPARTMENT OF ENERGY

Intact

Defect identification

Defect identification

Evaluation

 $Precision = \frac{TP}{TP + FP}$

 $F_1 = \frac{\sum 2\text{TP}}{\sum 2\text{TP} + \text{FN} + \text{FP}}$

Model	YOLO	ResNet18	ResNet50	ResNet152	RF
Avg F1 (val)	0.86	0.87	0.87	0.87	0.57
Avg F1 (test)	0.78	0.83	Not tested		

U.S. DEPARTMENT OF

Testing 129 modules 16082

97.4%

244

1.48%

DuraMAT

126

0.76%

45

0.27%

17

0.10%

BERKELEY LAB

Defect identification

Position distribution

U.S. DEPARTMENT OF

IENERG

Distribution of defects on 18,825 PV modules affected by fire. Here each heatmap shows the quantity of defects observed in each cell in a 16x8 solar module. Defects are recognized by YOLO model. The right-hand side of the image is the side of the module closest to the ground during the EL survey.

SNREL

DuraMAT

Dataset

Dataset	Images	Crack	Busbar	Cross	Dark
Train	1272	493	1272	323	270
Train oversample	1765	986	1765	598	538
Val	206	79	206	57	40
Test	359	120	359	97	68
Test crack	322	290	322	225	171

Evaluation

Dataset	Avg Precision	Avg Recall	Avg F1	Avg IoU
Val	0.886	0.879	0.882	0.795
Test	0.883	0.867	0.875	0.782
Test crack	0.884	0.852	0.867	0.770

Precision =
$$\frac{\sum_{I} \text{TP}}{\sum_{I} \text{TP} + \text{FP}}$$
; Recall = $\frac{\sum_{I} \text{TP}}{\sum_{I} \text{TP} + \text{FN}}$

$$F_1 = \frac{\sum_I 2TP}{\sum_I 2TP + FN + FP}; IoU = \frac{\sum_I TP}{\sum_I TP + FN + FP}$$

U.S. DEPARTMENT OF

Dura**MAT**

Performance

Left: ground truth Right: prediction.

Dura**MAT**

EL Images Analysis

PART 1

ERKELEY LA

Inactive area prediction

Worst case: isolated part becomes inactive [1]

Algorithm: Horizontal diffusion of busbars

aboratori

12/25

RKELEY LAB

Result

In the testing set:

- 75% of cells have inactive areas lower than 6.86%, and the average proportion is 4.54%.
- 31.4% of cells have zero inactive areas, which means they have insignificant cracks such as the one in the middle of figure (a).

To do

- Explain the mechanism underpinning the correlation between crack features and degradation (IV data)
- Explore correlation between EL images and IV data
- Predict output power with EL images

OUTLINE:

U.S. DEPARTMENT OF

IENERG

• **Goal:** Use operation data (DC current, DC voltage, module temperature and plane-of-array irradiance) to determine time-evolution single-diode model parameters of PV modules.

CINREL

15/25

uraMAT

Methods – Data Cleaning

- First inspect data and fix issues!
- Use solar data tools for basic quality checks:
- Time shifts.
- Capacity changes.
- Data completeness
- Bad data detection.
- > Visualization.

U.S. DEPARTMENT OF

ENERGY

Clear time detection

- Developed data-centric clear time filter (Solar data tools).
- Clear if:
- Power is close to clear sky model and
- Second-order difference is close to second-order difference for clear sky model.

()Dura**MAT**

Methods – Data Cleaning

Current irradiance filter

U.S. DEPARTMENT OF

43:46

• Current at MPP is expected to be proportional to plane-of-array (POA) irradiance.

 Method: Use Huber regressor (scikit-learn) to perform a linear fit between current and irradiance, classifying points as points to use or outliers.

ıraMAT

Temperature voltage filter

 Maximum power voltage and temperature should be linearly related.

- Deviations can occur if:
- MPP tracking errors.
- MPP tracking window limits.

- Method: Use Huber regressor to perform a linear fit between voltage and temperature, classifying points as points to use or outliers.
- (Only classify as outliers if POA > 200 W/m2)

Methods – Maximum Power Point Fitting

 $I = I_L - I_O \left[\exp\left(\frac{V + IR_S}{nV_{th}}\right) - 1 \right] - \frac{V + IR_S}{R_{SH}}$

PVPRO uses 5 fit parameters:

• Saturation current at reference conditions (Io)

Dura**MAT**

CNREL

- Photocurrent at reference conditions (IL)
- Series resistance (Rs)
- Extra shunt resistance (Rsh)
- Diode factor (n)

U.S. DEPARTMENT OF

IENERGY

Application: Synthetic data

Data:

Simulate PV system over time with various parameter degradation using NSRDB weather data (<u>https://nsrdb.nrel.gov/</u>) Irradiance sensor has multiplicative 2% error, temperature sensor has additive 1 C error, 15-minute data.

Sandia

National

laboratories

20/25

BERKELEY LAB

Application: Synthetic data

DuraMAT

Field data (NIST)

Ground dataset

- 1152 modules
- 271 kW

Canopy dataset

- 1032 modules
- 243 kW

Roof dataset

- 132 modules
- 73.3 kW

https://pvdata.nist.gov/

Results: Field data

 Reasonable and clear seasonality trend observed

• **Degradation rates** can be extracted for the SDM parameters

Ongoing:

- Get the **ground truth** (from indoor flashing test / reference module)
- Correlate the **data quality** with the variation of results

CDuraMAT

Ongoing: Connecting BOM with degradation

Summary

Conclusions:

- PVPRO provides an **automatic pipeline** including data cleaning, filtering, feature extraction and analysis.
- Degradation patterns of model parameters can be extracted by PVPRO using operation data
- Continued code development and tutorials on <u>https://github.com/DuraMAT/pvpro</u>

Future work:

- Determine **off-maximum power point** with PVPRO
- Refine the application of PVPRO on more large-scale PV systems and investigate the degradation

PVPRO

Q&A and thank you!

PVPRO: T. Karin*, X. Chen, B. Li, A. Jain, C. Hansen, M. Deceglie, B. Meyers, L. Schelhas, B. King, D. Jordan, S. Moffitt
PV-Vision: X. Chen*, T. Karin, A. Jain, C. Libby, R. Sundaramoorthy, M. Deceglie, T. Silverman, N. Bosco, M. Owen-Bellini, E. Young, X. He, E. Bernhardt, P. Hacke, M. Bolen, D. Fregosi, W. Hobbs, PVEL company

DuraMAT Webinar April 11, 2022

