LLNL Capabilities in Materials Modeling, Characterization, and Synthesis for Module **Reliability Improvement and Cost Reduction**

Overview

Unique capabilities in computational and experimental materials design, characterization, and synthesis enable accelerated insertion of new, high-performance materials throughout the solar module to improve reliability, extend lifetime, and reduce cost.

Materials Design and Discovery using High-Performance Computing

- Spanning the atomic-scale, mesoscale, and macro-scales, from first-principles to continuum
- Coupled-scale models allows accurate prediction of device and system response with few parameters

Fermi level pinning from defects reduce conductivity of TCO Hydrogen in SnO₂ VBM VBM Conduction Conduction band Valence band Valence ban

Transparent contact degradation

HPC resources, access, and support

These computational tools, combined with world-leading HPC, enable the design and search of improved materials for module components for longer lifetimes, higher reliability, and/or reduced cost.

Kinetics of phase transformations and defect evolution

Interfaces and defects

Polymer degradation

Infrared Spectroscopy of Water **Ingress in Solar Modules**

• Non-destructive study and qualification of long-term reliability of (flexible) modules related to water ingress into and through polymer encapsulants

Infrared signatures of water ingress in multiple transparency windows

Dynamic Transmission Electron Microscopy (DTEM)

• Unique instrument invented at LLNL for direct imaging of materials transformations at the sub-ns and sub-nm scales • Enables the study of reactivity, stability, and strength of materials, especially at interfaces, with unprecedented detail

15 nm time resolved images

Additive Manufacturing of Hierarchical Metamaterials

• Fabrication of metamaterials with enhanced properties and

0.5 µm

Hierarchically structured broadband absorptive coating

0.25 µm

Large-area 3D architected metamaterials with features spanning 7 orders of magnitude

Lawrence Livermore

National Laboratory

800

500 600 700 Wavelength nm

700

400

TECHNICAL REPRESENTATIVES

Tiziana Bond, Mihail Bora, Vincenzo Lordi, Joseph McKeown, Chris Spadaccini

0.5 µm

Prepared by LLNL under Contract DE-AC52-07NA27344.