

Exceptional service in the national interest

New magnetic and dielectric materials for compact and reliable micro-inverters

Todd C. Monson, Harlan Brown-Shaklee, Jack Flicker, Olga Lavrova Sandia National Laboratories, Albuquerque, NM 87185

Motivation

Developments in high temperature wide bandgap (WBG) switching technology can enable high-reliability, compact micro-inverters but have placed higher demands on passive electronic components like capacitors, inductors, resistors, and packaging

- -Silicon switches operate at 6-12kHz with a maximum operating temperature of ~200°C
- -WBG (SiC and GaN) switches operate >100kHz and >250°C
- -Higher operating temperatures and voltages reduce the lifetime of passive components.

Example: Electrolytic and film capacitors cannot operate >250°C!

Adapted from:
J. Neely, J. Flicker, B. Kaplar (SNL)

Passive elements comprise the bulk of the volume and mass of a power converter

WBG/UWBG materials enable higher switching frequency and better thermal management

Inductors

New soft magnetic materials are required to enable high frequency microinverters

Si steels 1900 1925 1950 1975 1990 History of soft magnetic material development

nanocrystalline alloys (also Fe & Co based)

soft ferrites

Fe & Co based amorphous alloys

permalloy

adapted from: L.A. Dobrzański, M. Drak, B. Ziębowicz, Materials with specific magnetic

adapted from: L.A. Dobrzański, M. Drak, B. Ziębowicz, Materials with specific magnetic properties, Journal of Achievements in Materials and Manufacturing Eng., 17, 37 (2006).

γ'-Fe₄N can meet all requirements of high frequency power electronics!

Magnetic Material	J _s (T)	ρ(μΩ·m)	Cost
VITROPERM (Vacuumschmelze)	1.20	1.15	High
Metglas 2605SC	1.60	1.37	High
Ferrite (Fexxocube)	0.52	5x10 ⁶	Low
Si steel	1.87	0.05	Low
γ' -Fe ₄ N	1.89	> 200	Low

First ever bulk γ' -Fe₄N!

Net-shaped and sintered toroids (no machining required)

Enrique Lavernia research group

Capacitors

DC Link Capacitor Prototype

~400nF-1000V high temperature capacitor built without precious metal cofire

Aging of SNL capacitor for 1 month at 1000V and 250°C

High frequency, high temperature, and high voltage inverter designs favor thick dielectric layers that do not require precious metal cofire

System

Achieved: GaN \Rightarrow 215 W/in³ 92 V, ~92 mA \Rightarrow 8.5 W, 215 W/in³, 1 MHz

High-power test system for evaluation of power semiconductor switches

- 10 kV, 50 A
- Packaged parts up to 400°C

