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Stages of PMMA Degradation
1) Tinuvin Bleaching, 
2) Chain Scission, 
3) Mechanical Degradation 
With Change-point Transitions

16 Modules Measured While Exposed:
Damp Heat – 85°C, 85%RH
UV – 60°C, ~80W/m2

Every 1000 Hours, 2 Modules:
Destructively Disassembled & Evaluated

Final Dataset:
15 Variables Total
2 Different Stress Conditions

Network Models Can Integrate and Aggregate Multiple Experiments 
Metallization Corrosion

Corrosion of screen printed Ag gridlines
I-V, EL, Raman Confocal Microscopy

B. ‘Aggressive’

A. ‘Non-Aggressive’

PET Degradation
Hazing of UV Stabilized PET in ASTM G154
UV, heat and dark condensing humidity
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Network Modeling allows for large data sets 
• To model degradation and performance
• To predict lifetime for current PV modules & materials
• To predict lifetime of new technologies

Network Modeling shown for 
• PV modules
• PET
• Metallization Corrosion
• PV Module Power Data
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Variables Mechanisms In semi-gSEM analysis

Time As a proxy to exposures Main stresssor

abs/cm at 312 nm Degradation of the polymer 
backbone

Mechanistic variable

abs/cm at 340 nm UV stabilizer bleaching Mechanistic variable

IR band at 975 cm-1 Change in morphology
(Crystallization) 

Mechanistic variable

IR band at 1711 cm-1 Chain scissions Mechanistic variable

Yellowness index (YI) Photolytic and hydrolytic 
degradation

Performance level response

Haze (%) Hydrolytic degradation and 
cyclic heat

Performance level response

Yellowing of UV Stabilized PET in Hot QUV

Chain Scission and Crystallization
Produce Yellowing
Confirmatory Evidence From IV and DSC measurements

Accurately model the lifetime and performance PV modules 
• essential for predicting the levelized cost of energy. 
Generalized network models 
• provide quantitative predictions
• framework for integration of multiple experiments, data types, and study 

designs.
Network model development
• big data analytics approach 
• combining data from PV modules exposed to real-world and accelerated, lab-

based weathering
• diverse set of studies with differing study designs and data types 
Graph-theory informed network modeling 
• for larger complex systems such thousands of PV plants spread 
• across diverse climatic zones,
• to enable more precise understanding of the stressors 
• PV plants actually spend their lifetime under. 

Graphs are structures to model pairwise relationships btwn objects.
Nodes/Vertices are connected by Edges

In a Graph Network Model of PV Power Plants, 
each inverter is represented as a Node 
the correlations between them are the Edges.

Minute by Minute Data 
loaded in from HBase

→ is Averaged daily 
To create a Data Frame 

with 365 values per inverter

Pearson’s Correlation Coefficient: 
The degree of the relationship 

between linear related variables
Assumes that both variables are 

normally distributed
For 2 lists, X and Y:

● Where n is the # of observations

42 powerplants 
AC_power data taken from 2013
Edge deletion threshold: 

correlation of .4
Nodes sized based on number of 

modules
Nodes colored based on location:

Red: Northeast United States
Blue: Southern  California
Green: Southeast United States

Fruchterman-Reingold layout algorithm

Mixed Effect & Fixed Effect Modeling
Predictive Modeling
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